319 research outputs found

    A multidisciplinary engineering summer school in an industrial setting

    Get PDF
    Most university-level engineering studies produce technically skilled engineers. However, typically students face several difficulties whenworking in multidisciplinary teams when they initiate their industrial careers. In a globalised world, it becomes increasingly important that engineers are capable of collaborating across disciplinary boundaries and exhibit soft competencies, like communication, interpersonal and social skills, time planning, creativity, initiative, and reflection. To prepare a group of engineering and industrial design students to acquire those capabilities, an international summer school that combined industrial design with different kinds of engineering disciplineswas organised on the site of Bang&Olufsen (B&O) in Denmark. This multidisciplinary engineering summer school was attended by students from six European university-level teaching institutions and was supervised by teachers from those institutions and industrial experts from B&O. The main aim of the summer school was to allow students to work in teams, composed of students from different knowledge disciplines and with different cultural backgrounds, with the purpose of developing innovative concepts and products, within a strong industrial perspective.B&OERASMU

    The enzymatic activity of the VEGFR2-receptor for the biosynthesis of dinucleoside polyphosphates

    No full text
    The group of dinucleoside polyphosphates encompasses a large number of molecules consisting of two nucleosides which are connected by a phosphate chain of variable length. While the receptors activated by dinucleoside polyphosphates as well as their degradation have been studied in detail, its biosynthesis has not been elucidated so far. Since endothelial cells released the dinucleoside polyphosphate uridine adenosine tetraphosphate (Up4A), we tested cytosolic proteins of human endothelial cells obtained from dermal vessels elicited for enzymatic activity. When incubated with ADP and UDP, these cells showed increasing concentrations of Up4A. The underlying enzyme was isolated by chromatography and the mass spectrometric analysis revealed that the enzymatic activity was caused by the vascular endothelial growth factor receptor 2 (VEGFR2). Since VEGFR2 but neither VEGFR1 nor VEGFR3 were capable to synthesise dinucleoside polyphosphates, Tyr-1175 of VEGFR2 is most likely essential for the enzymatic activity of interest. Further, VEGFR2-containing cells like HepG2, THP-1 and RAW264.7 were capable of synthesising dinucleoside polyphosphates. VEGFR2-transfected HEK 293T/17 but not native HEK 293T/17 cells synthesised dinucleoside polyphosphates in vivo too. The simultaneous biosynthesis of dinucleoside polyphosphates could amplify the response to VEGF, since dinucleoside polyphosphates induce cellular growth via P2Y purinergic receptors. Thus the biosynthesis of dinucleoside polyphosphates by VEGFR2 may enhance the proliferative response to VEGF. Given that VEGFR2 is primarily expressed in endothelial cells, the biosynthesis of dinucleoside polyphosphates is mainly located in the vascular system. Since the vasculature is also the main site of action of dinucleoside polyphosphates, activating vascular purinoceptors, blood vessels appear as an autocrine system with respect to dinucleoside polyphosphates. We conclude that VEGFR2 receptor is capable of synthesising dinucleoside polyphosphates. These mediators may modulate the effects of VEGFR2 due to their proliferative effects

    Targeting of the Plzf gene in the rat by transcription activator-like effector nuclease results in caudal regression syndrome in spontaneously hypertensive rats

    Get PDF
    Recently, it has been found that spontaneous mutation Lx (polydactyly-luxate syndrome) in the rat is determined by deletion of a conserved intronic sequence of the Plzf (Promyelocytic leukemia zinc finger protein) gene. In addition, Plzf is a prominent candidate gene for quantitative trait loci (QTLs) associated with cardiac hypertrophy and fibrosis in the spontaneously hypertensive rat (SHR). In the current study, we tested the effects of Plzf gene targeting in the SHR using TALENs (transcription activator-like effector nucleases). SHR ova were microinjected with constructs pTAL438/439 coding for a sequence-specific endonuclease that binds to target sequence in the first coding exon of the Plzf gene. Out of 43 animals born after microinjection, we detected a single male founder. Sequence analysis revealed a deletion of G that resulted in frame shift mutation starting in codon 31 and causing a premature stop codon at position of amino acid 58. The Plzftm1Ipcv allele is semi-lethal since approximately 95% of newborn homozygous animals died perinatally. All homozygous animals exhibited manifestations of a caudal regression syndrome including tail anomalies and serious size reduction and deformities of long bones, and oligo- or polydactyly on the hindlimbs. The heterozygous animals only exhibited the tail anomalies. Impaired development of the urinary tract was also revealed: one homozygous and one heterozygous rat exhibited a vesico-ureteric reflux with enormous dilatation of ureters and renal pelvis. In the homozygote, this was combined with a hypoplastic kidney. These results provide evidence for the important role of Plzf gene during development of the caudal part of a body-column vertebrae, hindlimbs and urinary system in the rat

    Genetically Determined Folate Deficiency Is Associated With Abnormal Hepatic Folate Profiles in the Spontaneously Hypertensive Rat

    Get PDF
    Increased levels of plasma cysteine are associated with obesity and metabolic disturbances. Our recent genetic analyses in spontaneously hypertensive rats (SHR) revealed a mutated Folr1 (folate receptor 1) as the quantitative trait gene associated with diminished renal Folr1 expression, lower plasma folate levels, hypercysteinemia, hyperhomocysteinemia and metabolic disturbances. To further analyse the effects of the Folr1 gene expression on folate metabolism, we used mass spectrometry to quantify folate profiles in the plasma and liver of an SHR-1 congenic strain, with wild type Folr1 allele on the SHR genetic background, and compared them with the SHR strain. In the plasma, concentration of 5-methyltetrahydrofolate (5mTHF) was significantly higher in SHR-1 congenic rats compared to SHR (60±6 vs. 42±2 nmol/l, P<0.01) and 5mTHF monoglutamate was the predominant form in both strains (>99 % of total folate). In the liver, SHR-1 congenic rats showed a significantly increased level of 5mTHF and decreased concentrations of dihydrofolate (DHF), tetrahydrofolate (THF) and formyl-THF when compared to the SHR strain. We also analysed the extent of folate glutamylation in the liver. Compared with the SHR strain, congenic wild-type Folr1 rats had significantly higher levels of 5mTHF monoglutamate. On the other hand, 5mTHF penta- and hexaglutamates were significantly higher in SHR when compared to SHR-1 rats. This inverse relationship of rat hepatic folate polyglutamate chain length and folate sufficiency was also true for other folate species. These results strongly indicate that the whole body homeostasis of folates is substantially impaired in SHR rats compared to the SHR-1 congenic strain and might be contributing to the associated metabolic disturbances observed in our previous studies

    Data Integration Model for Air Quality: A Hierarchical Approach to the Global Estimation of Exposures to Ambient Air Pollution

    Get PDF
    This is the author accepted manuscript. Available from arXiv via the URL in this record.Air pollution is a major risk factor for global health, with both ambient and household air pollution contributing substantial components of the overall global disease burden. One of the key drivers of adverse health effects is fine particulate matter ambient pollution (PM2:5) to which an estimated 3 million deaths can be attributed annually. The primary source of information for estimating exposures has been measurements from ground monitoring networks but, although coverage is increasing, there remain regions in which monitoring is limited. Ground monitoring data therefore needs to be supplemented with information from other sources, such as satellite retrievals of aerosol optical depth and chemical transport models. A hierarchical modelling approach for integrating data from multiple sources is proposed allowing spatially-varying relationships between ground measurements and other factors that estimate air quality. Set within a Bayesian framework, the resulting Data Integration Model for Air Quality (DIMAQ) is used to estimate exposures, together with associated measures of uncertainty, on a high resolution grid covering the entire world. Bayesian analysis on this scale can be computationally challenging and here approximate Bayesian inference is performed using Integrated Nested Laplace Approximations. Model selection and assessment is performed by cross-validation with the final model offering substantial increases in predictive accuracy, particularly in regions where there is sparse ground monitoring, when compared to previous approaches: root mean square error (RMSE) reduced from 17.1 to 10.7, and population weighted RMSE from 23.1 to 12.1 gm3. Based on summaries of the posterior distributions for each grid cell, it is estimated that 92% of the world’s population reside in areas exceeding the World Health Organization’s Air Quality Guidelines.Matthew Lloyd Thomas is supported by a scholarship from the EPSRC Centre for Doctoral Training in Statistical Applied Mathematics at Bath (SAMBa), under the project EP/L015684/1. Amelia Jobling was supported for this work by WHO contracts APW 201255146 and 201255393
    • …
    corecore