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Abstract

Air pollution is a major risk factor for global health, with 3 million deaths annually being at-
tributed to fine particulate matter ambient pollution (PM2.5). The primary source of information
for estimating population exposures to air pollution has been measurements from ground moni-
toring networks but, although coverage is increasing, there remain regions in which monitoring is
limited. The Data Integration Model for Air Quality (DIMAQ) supplements ground monitoring
data with information from other sources, such as satellite retrievals of aerosol optical depth and
chemical transport models. Set within a Bayesian hierarchical modelling framework, the model
allows spatially-varying relationships between ground measurements and other factors that esti-
mate air quality. The model is used to estimate exposures, together with associated measures of
uncertainty, on a high resolution grid covering the entire world from which it is estimated that 92%
of the world’s population reside in areas exceeding the World Health Organization’s Air Quality
Guidelines.
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1 Introduction
Ambient air pollution poses a significant threat to global health and has been associated with a range
of adverse health effects, including cardiovascular and respiratory diseases in addition to some cancers
(Brook et al., 2010; Hoek et al., 2013; Loomis et al., 2013; Newby et al., 2014; Sava and Carlsten, 2012;
WHO, 2013). Fine particulate matter (PM2.5) in particular has been established as a key driver of
global health with an estimated 3 million deaths in 2014 being attributable to PM2.5 (WHO, 2016a).
It has been estimated that the majority of the world’s population (87%) reside in areas in which the
World Health Organization (WHO) air quality guideline (annual mean of 10 µgm−3) for PM2.5 is
exceeded (Brauer et al., 2015).

It is vital that the subsequent risks, trends and consequences of air pollution are monitored and
modelled to develop effective environmental and public health policy to lessen the burden of air pollu-
tion. Accurate measurements of exposure in any given area are required but this is a demanding task:
the processes involved are extremely complex and ground monitoring is scarce in many regions. The
locations of ground monitoring sites within the WHO Air Pollution in Cities database (WHO, 2016b)
are shown in Figure 1 where it can be seen that the density of monitoring sites varies considerably,
with extensive measurements available in North America, Europe, China and India but with little or
no measurement data available for large areas of Africa, South America and the Middle East.

For this reason, there is a need to use information from other sources in order to obtain estimates of
exposures for all areas of the world. In 2013, the Global Burden of Disease study (henceforth referred
to as GBD2013), as described in Forouzanfar et al. (2015), used a regression calibration approach
to utilise information from satellite remote sensing and chemical transport models to create a set of
estimates of exposures on a high–resolution grid (0.1

◦ × 0.1
◦
, approximately 11km × 11km at the

equator) that were then matched to population estimates to estimate disease burden. In GBD2013, a
fused estimate of PM2.5, calculated as the average of estimates from satellites and chemical transport
models, was calibrated against ground measurements using linear regression. For cells that contained
a ground monitor, measurements were regressed against this fused estimate in conjunction with infor-
mation related to local monitoring networks (Brauer et al., 2015). The resulting calibration function
was applied to all grid cells, allowing a comprehensive set of global estimates of PM2.5 to be produced.

This allowed data from the three sources to be utilised, but the use of a single, global, calibration
function resulted in underestimation in a number of areas (Brauer et al., 2015). In reality, the rela-
tionships between ground measurements and estimates from other sources will vary spatially due to
regional differences in biases and errors that will be present in the different methods of estimation.
Recently, Van Donkelaar et al. (2016) extended this approach using geographically weighted regression
(GWR) to allow calibration (between the measurements and estimates) equations to vary spatially
and to utilise additional information related to land use and the chemical composition of particulate
matter. However, both the original linear regression and GWR approaches only provide an informal
analysis of the uncertainty associated with the resulting estimates of exposure.

In addition to regional differences in calibration functions, additional challenges arise when com-
bining data that are generated in fundamentally different ways. Satellite pixels and chemical transport
model cells are not the same with each potentially not capturing different micro-scale features that
may be reflected in the ground measurements and all three sources of data will have different error
structures that may not align. The difference in resolution between ground monitors (point locations)
and estimates from satellite and chemical transport models (grid cells) has led to the use of spatially
varying coefficient models, often referred to as downscaling models (Chang, 2016). In the purely spatial
model presented in Berrocal et al. (2010) for example, the intercepts and coefficients are assumed to
arise from a continuous bivariate spatial process. Downscaling/upscaling models, set within a Bayesian
hierarchical framework, have been used for both spatial and spatio-temporal modelling of air pollution
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with examples including Guillas et al. (2006), who used the UIUC 2-D chemical-transport model of the
global atmosphere; Van de Kassteele et al. (2006), who modelled PM10 concentrations over Western
Europe using information from both satellite observations and a chemical transport model; McMillan
et al. (2010) who modelled PM2.5 in the North Eastern U.S. using estimates from the Community
Multi-scale Air Quality (CMAQ) numerical model; Kloog et al. (2014) who modelled PM2.5 in the
Northeastern U.S. using satellite-based aerosol optical depth (AOD) and Berrocal et al. (2010) and
Zidek et al. (2012) who modelled ozone in the Eastern U.S. (Eastern and Central in the case of Zidek
et al.) using estimates from CMAQ and a variant of the MAQSIP (Multiscale Air Quality Simulation
Platform) model respectively.

An alternative approach to the calibration used in downscaling is Bayesian melding (Poole and
Raftery, 2000) in which both the measurements and the estimates are assumed to arise from an un-
derlying latent process that represents the true level of the pollutant. This latent process itself is
unobservable but measurements can be taken, possibly with error, at locations in space and time. For
example, the underlying latent process represents the true level of PM2.5 and this gives rise to the
measurements from ground monitors and the estimates from satellite remote sensing and atmospheric
models, all of which will inform the posterior distribution of the underlying latent process. Bayesian
melding has been used to model SO2 in the Eastern U.S. combining ground measurements with infor-
mation from the Models-3 air quality model (Fuentes and Raftery, 2005).

In this paper, a model is presented for integrating data from multiple sources, that enables accurate
estimation of global exposures to fine particulate matter. Set within a Bayesian hierarchical framework,
this Data Integration Model for Air Quality (DIMAQ) estimates exposures, together with associated
measures of uncertainty, at high geographical resolution by utilising information from multiple sources
and addresses many of the issues encountered with previous approaches. The structure of the paper is
as follows: after this introduction, Section 2 provides details of the data that are available, including
measurements from ground monitoring and estimates from satellites and chemical transport models.
Section 3 provides details of the statistical model (DIMAQ) that is used to integrate data from these
different sources and methods for inference when performing Bayesian analysis with large datasets.
In Section 4 the results of applying DIMAQ are presented, including examples of global and country
specific estimates of exposure to PM2.5 together with details of the methods used for model evaluation
and comparison. Finally, Section 5 provides a concluding summary and a discussion of potential areas
for future research.

2 Data
The sources of data used here can be allocated to one of three groups: (i) ground monitoring data; (ii)
estimates of PM2.5 from remote sensing satellites and chemical transport models; (iii) other sources
including population, land–use and topography. Ground monitoring is available at a distinct number
of locations, whereas the latter two groups provide near complete global coverage (and have previously
been shown to have strong associations with global concentrations of PM2.5, see below for details).
Utilising such data will allow estimates of exposures to be made for all areas, including those for which
ground monitoring is sparse or non-existent.

2.1 Ground measurements
Ground measurements were available for locations reported within the WHO Air Pollution in Cities
database (WHO, 2016b), but rather than using the city averages reported in that database, monitor-
specific measurements are used. The result was measurements of concentrations of PM10 and PM2.5

from 6,003 ground monitors. The locations and annual average concentrations for these monitors can
be seen in Figure 1. The database was compiled to represent measurements in 2014 with the majority
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of measurements coming from that year (2760 monitors). Where data were not available for 2014,
data were used from 2015 (18 monitors), 2013 (2155), 2012 (564), 2011 (60), 2010 (375), 2009 (49),
2008 (21) and 2006 (1). In addition to annual average concentrations, additional information related
to the ground measurements was also included where available, including monitor geo coordinates and
monitor site type.

For locations measuring only PM10, PM2.5 measurements were estimated from PM10. This was per-
formed using a locally derived conversion factor (PM2.5/PM10 ratio, for stations where measurements
are available for the same year) that was estimated using population-weighted averages of location-
specific conversion factors for the country as detailed in Brauer et al. (2012). If country-level conversion
factors were not available, the average of country-level conversion factors within a region were used.

2.2 Satellite-based estimates
Satellite remote sensing is a method that estimates pollution from satellite retrievals of aerosol optical
depth (AOD), a measurement of light extinction by aerosols in the atmosphere. AOD indicates how
aerosols modify the radiation leaving the top of the atmosphere after being scattered by the Earth’s
atmosphere and surface. Estimates of PM2.5 are obtained by correcting AOD using a spatially varying
term, η,

PM2.5 = η ×AOD .

Here η is the coincident ratio of PM2.5 to AOD and accounts for local variation in vertical structure,
meteorology, and aerosol type. This ratio is simulated from the GEOS-Chem global chemical transport
model (Bey et al., 2001).

The estimates used here combine AOD retrievals from multiple satellites with simulations from
the GEOS-Chem chemical transport model and land use information, produced at a spatial resolution
of 0.1

◦ × 0.1
◦
, which is approximately 11km × 11km at the equator. This is described in detail in

Van Donkelaar et al. (2016). A map of the estimates of PM2.5 from this model can be seen in Figure
2.

0 10 20 30 40 50 60 70 80 90+

Figure 1: Locations of ground monitors measuring PM2.5 (circles) and PM10 (crosses). Colours denote
the annual average concentrations (µgm−3) of PM2.5 (or PM2.5 converted from PM10). Data are from
2014 (46%), 2013 (36%), 2012 (9%) and 2006-2011, 2015 (9%).
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Figure 2: Satellite-based estimates of PM2.5 (µgm−3) for 2014, by grid cell (0.1
◦ × 0.1

◦
resolution).

2.3 Chemical transport model simulations
Numerically simulated estimates of PM2.5 were obtained from atmospheric chemical transport models.
There are a variety of such models available including GEOS-Chem (Bey et al., 2001), TM5 (Hui-
jnen et al., 2010) and TM5-FASST (Van Dingenen et al., 2014). The first two of these are nested
3-dimensional global atmospheric transport models which can be used to simulate levels of PM2.5 with
TM5-FASST being a reduced form of the full TM5 model, developed to allow faster computation for
impact assessment (Van Dingenen et al., 2014). Estimates at a spatial resolution of 1

◦ × 1
◦
were allo-

cated to a higher resolution grid, of 0.1
◦×0.1

◦
, based on population density (Brauer et al., 2012, 2015).

Estimates for PM2.5 from the TM5-FASST model were available for 2010, as described in Brauer et al.
(2015). A map of these estimates can be seen in Figure 3a.

In addition to the estimates of PM2.5, estimates of the sum of sulphate, nitrate, ammonium and
organic carbon (SNAOC) and the compositional concentrations of mineral dust (DUST) based on
simulations from the GEOS-Chem chemical transport model (Van Donkelaar et al., 2016) were available
for 2014. Maps of the estimates of SNAOC and DUST can be seen in Figures 3b and 3c respectively.

2.4 Population data
A comprehensive set of population data on a high-resolution grid was obtained from the Gridded
Population of the World (GPW) database (GPW, 2016). These data are provided on a 0.0417

◦×0.0417
◦

resolution. Aggregation to each 0.1
◦ × 0.1

◦
grid cell was performed as detailed in Brauer et al. (2015).

GPW version 4 provides population estimates for 2000, 2005, 2010, 2015 and 2020. Following the
methodology used in Brauer et al. (2015), populations for 2014 were obtained by interpolation using
cubic splines (performed for each grid cell) with knots placed at 2000, 2005, 2010, 2015 and 2020. A
map of the resulting estimates of populations for 2014 can be seen in Figure 4.

2.5 Land use
Van Donkelaar et al. (2016) developed a measure combining information on elevation and land use that
was shown to be a significant predictor of PM2.5. For each ground monitor, the following are calculated:
(i) the difference between the elevation (of the ground monitor) and that of the surrounding grid cell,
as defined by the GEOS-Chem chemical transport model (ED); (ii) the distance to the nearest urban
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(a) Estimates of PM2.5 (µgm−3) for 2010 from the TM5 chemical transport model used in GBD2013.

(b) Estimates of the sum of sulphate, nitrate, ammonium and organic carbon (µgm−3) for 2014 from the
GEOS-Chem chemical transport model.

(c) Estimates of the compositional concentrations of mineral dust (µgm−3) for 2014 from the GEOS-Chem
chemical transport model.

Figure 3: Estimates from chemical transport models, by grid cell (0.1
◦ × 0.1

◦
resolution).
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Figure 4: Population estimates for 2014 from the Gridded Population of the World version 4 (GPW
v4) database, by grid cell (0.1

◦ × 0.1
◦
resolution).

land surface (DU), based upon MODIS land cover descriptions (Friedl et al., 2010). The resulting
measure (ED × DU) was available for 2014 for each 0.1

◦ × 0.1
◦
grid cell.

3 Statistical Modelling
The aim is to obtain estimates of concentrations of PM2.5 for each of 1.4 million grid cells, together
with associated measures of uncertainty. This will be achieved by finding the posterior distributions
for each cell, from which summary measures will be calculated.

The overall approach is statistical calibration as described in Chang (2016): a regression model is
used to express ground measurements, Ys, available at a discrete set of NS locations S ∈ S with labels
S = {s0, s1, . . . , sNS

}, that are a function of covariates, Xsr: r = 1, . . . , R, that reflect information
from other sources, as described in Section 2. Covariate information may be available for point loca-
tions (as with the ground measurements) or on a grid of NL cells, l ∈ L where L = l1, ..., lNL

.

Considering a single covariate, Xlr, for ease of explanation,

Ys = β̃0s + β̃1sXlr + εs (1)

where Xlr is measured on a grid. Here, εs ∼ N(0, σ2
ε ) is a random error term. The terms β̃0s and β̃1s

denote random effects that allow the intercept and coefficient to vary over space

β̃0s = β0 + β0s

β̃1s = β1 + β1s .

Here, β0 and β1 are fixed effects representing the mean value of the intercept and coefficients respec-
tively, with β0s and β1s zero mean spatial random effects providing (spatially driven) adjustments to
these means, allowing the calibration functions to vary over space. In downscaling models, it is as-
sumed that the parameters β0s and β1s arise from a continuous spatial process which allows within grid
cell variation (see Berrocal et al. (2010) for an example using a continuous bivariate spatial process).

Despite monitoring data being increasingly available, there are issues that may mean using a spatial
continuous process may be problematic in this setting. Monitoring protocols, measurement techniques,
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quality control procedures and mechanisms for obtaining annual averages may vary from country-to-
country (Brauer et al., 2012) leading to natural discontinuities in ground measurements, and their
precision, between countries. In addition, the geographic distribution of measurements, as seen in Fig-
ure 1, is heavily biased toward North America, Europe, China and India with some areas of the world,
e.g. Africa, having very little monitoring information to inform such a model. Therefore, the spatial
random effects used here are based on country level geography rather than continuous spatial processes.

The structure of the random effects used here exploits a geographical nested hierarchy: each of the
187 countries considered are allocated to one of 21 regions and, further, to one of 7 super-regions. Each
region must contain at least two countries and is broadly based on geographic regions/sub-continents
and groupings based on country level development status and causes of death (Brauer et al., 2012).
The geographical structure of regions within super-regions can be seen in Figure 5. Where there are
limited monitoring data within a country, information can be borrowed from higher up the hierarchy,
i.e. from other countries within the region and further, from the wider super-region. It is noted that
the ‘high income’ super-region is non-contiguous and for North Africa/Middle East the region is the
same as the super-region and therefore will be a single set of random effects, i.e. no distinction between
region and super-region, for this area.

3.1 A Data Integration Model for Air Quality
Annual averages of ground measurements (of PM2.5) at point locations, s, within grid cell, l, country,
i, region, j, and super–region, k are denoted by Yslijk. As described in Section 3, there is a nested
hierarchical structure with s = 1, . . . , Nlijk sites within grid cell, l; l = 1, . . . , Nijk, grid cells within
country i; i = 1, . . . , Njk, countries within region j; j = 1, . . . , Nk, regions within super–region k:
k = 1, . . . , N . In order to allow for the skew in the measurements and the constraint of non–negativity,
the (natural) logarithm of the measurements are used.

The model consists of sets of fixed and random effects, for both intercepts and covariates, and is
given as follows,

log(Yslijk) = β̃0,lijk +
∑
q∈Q

β̃q,ijkXq,lijk

+
∑
p1∈P1

βp1Xp1,lijk +
∑
p2∈P2

βp2Xp2,slijk

+ εslijk , (2)

where εslijk ∼ N(0, σ2
ε ) is a random error term. A set of R covariates contains two groups, R = (P,Q),

where P are those which have fixed effects (across space) and Q those assigned random effects. The
main estimates of air quality, e.g. those from satellites and chemical transport models, will be assigned
random effects and are in Q, with other variables being assigned fixed effects. Within the group, P ,
of covariates that have fixed effects; P1 are available at the grid cell level, l, with others, P2, being
available for the point locations, s, of the monitors, P = (P1, P2).

3.1.1 Structure of the random effects

Here, the random effect terms, β̃0,lijk and β̃q,ijk, have contributions from the country, the region and
the super–region, with the intercept also having a random effect for the cell representing within-cell
variation in ground measurements,

β̃0,lijk = β0 + βG0,lijk + βC0,ijk + βR0,jk + βSR0,k

β̃q,ijk = βq + βCq,ijk + βRq,jk + βSRq,k .
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Asia, Central
Asia, East
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Caribbean
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North Africa / Middle East
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(a) Map of regions.
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South Asia
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Southeast Asia, East Asia and Oceania
Sub−Saharan Africa

(b) Map of super-regions.

Figure 5: Schematic showing the nested geographical structure of countries within regions within
super-regions.
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For clarity of exposition, the following description is restricted to a generic parameter, β. Let βSRk
denote the coefficient for super-region k. The coefficients for super-regions are distributed with mean
equal to the overall mean (β0, the fixed effect) and variance, σ2

SR, representing between super-region
variability,

βSRk ∼ N(β0, σ
2
SR)

where k = 1, . . . , N = 7. Similarly, each super-region contains a number of regions. Let βRjk denote the
coefficient for region j (in super–region k) that will be distributed with mean equal to to the coefficient
for the super-region and variance representing the between region (within super–region) variability,

βRjk ∼ N(βSRk , σ2
R,k),

where j = 1, . . . , Nk, the number of regions in super-region j. Each region will contain a number of
countries. Let βCijk denote the coefficient for country i in region j and super-region k. The country
level effect will be distributed with mean equal to the coefficient for region j within super-region k
with variance representing the between country (within region) variability,

βCijk ∼ N(βRjk, σ
2
C,jk), (3)

where i = 1, . . . , Njk is the number of countries in region j (in super–region k). Note that in the case
of the intercepts, there is an additional term, βGlijk, representing within grid cell (between monitoring
locations) variability.

Country effects within regions and regional effects within super–regions are assumed to be inde-
pendent within their respective geographies. However, the geographical hierarchy is broadly based
on geographic regions, sub-continents, mortality and economic factors (Brauer et al., 2012) and, as
such, there are countries for which the allocation may not be optimal when considering environmen-
tal factors, such as air pollution. For example, Mongolia is included within the Asia Central region
and Central Eastern Europe and Central Asia super–region (see Figure 5) but its pollution profile
might be expected to be more similar to those of its direct neighbours, including China (which is in
a different region (Asia East)) and super–region (South East Asia, East Asia and Oceania), than the
profiles of more western countries. For this reason, it might be advantageous to allow the borrowing
of information in Equation (3) to include countries that are immediate neighbours rather than all
of the countries in the surrounding administrative region. This could be achieved using an intrinsic
conditionally autoregressive (ICAR) model (Besag, 1974) in place of Equation (3),

βCi |βCi′ , i′ ∈ ∂i ∼ N
(
β
C

i ,
ψ2

N∂i

)
,

where ∂i is the set of neighbours of country i, N∂i is the number of neighbours, and β
C

i is the mean of
the spatial random effects of these neighbours.

3.1.2 Hyperpriors

Gaussian priors, N(0, σ2), are assigned to each of the fixed effects β0 and βq where σ−2 = 0.0001.
Gamma priors, Ga(a, b) are assigned to the log of the precisions, i.e. log(σ−2G,i), log(σ−2C,j), log(σ−2R,j), log(σ−2SR)

and log(ψ−2), with a = 1, b = 0.00005.

3.2 Inference
The model presented in Section 3.1 is a Latent Gaussian Model (LGM) and therefore advantage can
be taken of methods offering efficient computation when performing Bayesian inference. LGMs can be
implemented using approximate Bayesian inference using integrated nested Laplace approximations
(INLA) as proposed in Rue et al. (2009) using the R-INLA software (Rue et al., 2012). The following
sections provide a brief summary of LGMs (Section 3.2.1) and INLA (Section 3.2.2) with additional
details linking to the model described in Section 3.1.
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3.2.1 Latent Gaussian models

The model presented in Equation (2) can be expressed in general form as follows: Given ηs = g(E(Ys)),
where g(·) is a link function,

ηs = β0 +

P∑
p=1

βpXqs +

Q∑
q=1

fq(Zqs)

where β0 is an overall intercept term, the set of βp (p = 1, . . . , P ) are the coefficients associated with
covariates, X; the fixed effects. The set of functions, f1(·), . . . , fQ(·) represent the random effects with
the form of the function being determined by the model. For example, a hierarchical model may have
f1(·) ∼ N(0, σ2

f ), with a distribution defined for σ2
f , whereas for standard regression, f(·) ≡ 0, leaving

just fixed effects.

The set of unknown parameters, θ, will include both the coefficients of the model shown above
and the parameters required for the functions, i.e. θ = (βp, fq). Here θ will contain the parameters
of the model as described in Section 3.1 and will include β0, βG0,lijk, β

C
0,ijk, β

R
0,jk, β

SR
0,k , βq, β

C
q,ijk, β

R
q,jk

and βSRq,k , with the set of hyperparameters associated with θ being ψ2 = (σ2
G,i, σ

2
C,j , σ

2
R,j , σ

2
SR). The

overall set of parameters, ψ = (ψ1,ψ2), also contains ψ1 = (σ2
ε ), which relates to the variance of the

measurement error in the data.

Assigning a Gaussian distribution to the parameters in θ, θ|ψ ∼ MVN(0|Σ (ψ2)) will result in a
LGM. The computation required to perform inference will be largely determined by the characteristics
of the covariance matrix, Σ (ψ2), which will often be dense, i.e. it will have many entries that are
non-zero, leading to a high computational burden when performing the matrix inversions that will
be required to perform inference. If θ|ψ2 can be expressed in terms of a Gaussian Markov random
field (GMRF), then it may be possible to take advantage of methods that reduce computation when
performing Bayesian analysis on models of this type (Rue and Held, 2005). Using a GMRF means
that typically the inverse of the covariance matrix, Q = Σ−1 will be sparse (i.e. more zero entries) due
to the conditional independence between sets of parameters in which θl ⊥⊥ θm|θ−lm ⇐⇒ Qlm = 0
(where −lm denotes the vector of θ with the l and m elements removed) (Rue and Held, 2005). Ex-
pressing θ|ψ2 in terms of the precision, rather than the covariance, gives θ|ψ ∼ MVN(0|Q(ψ2)−1),
where ψ2 denotes the parameters associated with Q rather than Σ .

3.2.2 Integrated Laplace approximations

Estimation of the (marginal) distributions of the model parameters and hyperparameters of a LGM
will require evaluation of the following integrals:

p(θj |Y ) =

∫
p(θj |Y ,ψ)p(ψ|Y )dψ

p(ψk|Y ) =

∫
p(ψ|Y )dψ−k (4)

In all but the most stylised cases, these will not be analytically tractable. Samples from these
distributions could be obtained using Markov chain Monte Carlo (MCMC) methods but there may
be issues when fitting LGMs using MCMC, as described in Rue et al. (2009), and the computational
burden may be excessive, especially large numbers of predictions are required. Here, approximate
Bayesian inference is performed using INLA. It is noted that the dimension of θ is much larger than
the dimension of ψ and this will help in the implementation of the model as the computational burden
increases linearly with the dimension of θ but exponentially with the dimension of ψ.
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The aim is to find approximations for the distributions shown in Equation (4). For the hyperpa-
rameters, the posterior of ψ given Y can be written as

p(ψ|Y ) =
p(θ,ψ|Y )

p(θ|ψ,Y )

∝ p(Y |θ)p(θ|ψ)p(ψ)

p(θ|ψ,Y )

≈ p(Y |θ)(θ|ψ)p(ψ)

p̃(θ|ψ,Y )

∣∣∣∣
θ=θ̂(ψ)

= p̃(ψ|Y ) .

Here a Laplace approximation (LA) is used in the denominator for p̃(θ|ψ,Y ). For univariate θ with
an integral of the form

∫
eg(θ), the LA takes the form g(θ) ∼ N(θ̂(ψ), σ̂2), where θ̂(ψ) is the modal

value of θ for specific values of the hyperparameters, ψ and σ̂2 =
{
d2 log g(θ)

dθ2

}−1
.

The mode of p̃(ψ|Y ) can be found numerically by Newton-type algorithms. Around the mode, the
distribution, log p̃(ψ|Y ), is evaluated over a grid of H points, ψ∗h, each with associated integration
weight ∆h. For each point on the grid, the marginal posterior, p̃(ψ∗h|Y ) is obtained from which ap-
proximations to the marginal distributions, p̃(ψ|Y ), can be found using numerical integration.

For the individual model parameters, θj ,

p(θj |Y ) =
p((θj ,θ−j),ψ|Y )

p(θ−j |θj ,ψ,Y )

∝ p(Y |θ)p(θ|ψ)p(ψ)

p(θ−j |θj ,ψ,Y )

≈ p(Y |θ)(θ|ψ)p(ψ)

p̃(θ−j |θj ,ψ,Y )

∣∣∣∣
θ−j=θ̂−j(θj ,ψ)

= p̃(θj |ψ,Y ) .

For an LGM, (θ−j |θj ,ψ,Y ) will be approximately Gaussian. There are a number of ways of con-
structing the approximation in the denominator including a simple Gaussian approximation which will
be computationally attractive but may be inaccurate. Alternatively, a LA would be highly accurate
but computationally expensive. R-INLA uses a computationally efficient method, a simplified LA,
that consists of performing a Taylor expansion around the LA of p̃(θj |ψ,Y ), aiming to ‘correct’ the
Gaussian approximation for location and skewness (Rue et al., 2009).

The marginal posteriors, p̃(ψ∗h|Y ), evaluated at each of the points ψ∗h, are used to obtain the con-
ditional posteriors, p̃(θj |ψ∗h,Y ), on a grid of values for θj . The marginal posteriors, p̃(θj |Y ), are then
found by numerical integration: p̃(θj |Y ) =

∑H
h p̃(θj |ψ

∗
h,Y )p̃(ψ∗h|Y )∆h, with the integration weights,

∆h, being equal when the grid takes the form of a regular lattice.

The model presented in Section 3.1 was implemented using R-INLA (Rue et al., 2012) installed on
the Balena high performance computing system (HPC) at the University of Bath
(www.bath.ac.uk/bucs/services/hpc/facilities/). Fitting the model described in Section 3.1 to
data from the 6003 monitors (and associated covariates) does not itself require the use of an HPC but
the prediction on the entire grid (of 1.4 million cells) did present some computational challenges. When
fitting the model, the prediction locations are treated as missing data and their posterior distributions
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are approximated simultaneously with model fitting. INLA requires a copy of the model to be stored
on a single node which, even with the high-memory compute nodes (32GBs per core) available with the
Balena HPC, resulted in memory issues when attempting to perform estimation and prediction on the
entire grid in a single step. Therefore, prediction was performed using subsets of the prediction grid,
each containing groups of regions. Each subset, including the satellite estimates and other variables
included in the model, was appended to the modelling dataset with both estimation and prediction
performed for each combination. The resulting sets of predictions were combined to give a complete
set of global predictions.

4 Results
A series of models based on the structure described in Section 3.1 were applied with the aim of assess-
ing the predictive ability of potential explanatory factors. The choice of which variables were included
in the final model was made based on their contribution to within-sample model fit and out-of-sample
predictive ability.

Details of the variables included in five candidate models can be seen in Table 1. They include
information on local network characteristics; indicator variables for whether the type of monitor was
unspecified, X1; whether the exact location is known, X2, and whether PM2.5 was estimated from
PM10 (X3); satellite-based estimates of PM2.5 concentrations (X4), estimates of PM2.5 (X5) from the
TM5-FASST chemical transport model, dust (DUST; X6) and the sum of sulphate, nitrate, ammo-
nium and organic carbon (SNAOC; X7) from atmospheric models; estimates of population (X8) and
a function of land–use and elevation (ED × DU; X9). Except for the measurements themselves, all
of these variables are spatially aligned to the resolution of the grid. Further details can be found in
Section 2.

In the comparisons that follow, model (i) is the model used in GBD2013 (Brauer et al., 2015) and
is a linear regression model with response equal to the average concentration from monitors within a
grid cell and covariates X1, X2 and X3 together with the average of the satellite-based estimates and
those from the TM5-FASST chemical transport model for each cell, (X4 + X5)/2. Models (ii) to (v)
are variants of the model presented in Section 3.1.

For evaluation, cross validation was performed using 25 combinations of training (80%) and val-
idation (20%) datasets. Validation sets were obtained by taking a stratified random sample, using
sampling probabilities based on the cross-tabulation of PM2.5 categories (0-24.9, 25-49.9, 50-74.9, 75-
99.9, 100+ µgm−3) and super-regions, resulting in concentrations in each validation sets having the
same distribution of PM2.5 concentrations and super-regions as the overall set of sites. The following
metrics were calculated for each training/evaluation set combination: for model fit, R2 and the deviance
information criteria (DIC, a measure of model fit for Bayesian models); and for predictive accuracy,
root mean squared error (RMSE) and population weighted root mean squared error (PwRMSE). For
the measures of predictive accuracy, each measurement (arising at a point location) is compared to
the prediction for the grid cell that contains the ground monitor in question.

The results of fitting the five candidate models can be seen in Table 2, which shows R2 and DIC for
within sample model fit and RMSE and PwRMSE for out-of-sample predictive ability, and in Figure
6 which shows the PwRMSE for each model by super-region. It can be seen that using any of the hi-
erarchical models based on the structure described in Section 3.1 provides an immediate improvement
in all metrics when compared to the linear model, with a single global calibration function, used in
GBD2013. For example, using model (ii) which contains satellite-based estimates, and population and
local network characteristics, results in the overall R2 improving from 0.54 to 0.90, DIC from 7828 to
1105 and reductions of 5.9 and 10.1 µgm−3 for RMSE and population weighted RMSE respectively.
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Model (i) (ii) (iii) (iv) (v)
Variable F R F R F R F R F R
Intercept X X X X X X X X X

X†1 X X X X X
X†2 X X X X X
X†3 X X X X X
X4 X X X X X X X X X
X5 X X X X X
X6 X X
X7 X X
X††8 X X X X X X X X
X9 X X

† Together with interaction with X4, X5 where they are
included within the model.
†† Country level random effects are assigned a
conditional autoregressive prior.

Table 1: Variables includes in each of five candidate models: X1, whether the type of monitor was
unspecified; X2, whether the exact location is known; X3, whether PM2.5 was estimated from PM10;
X4, satellite-based and X5 chemical transport model estimates of PM2.5; X6 and X7, estimates of
compositional concentrations of mineral dust and the sum of sulphate, nitrate, ammonium and organic
carbon from atmospheric models; X9, a function of elevation difference and land–use. Here, F and R
denote the inclusion of fixed and random effects respectively for each variable.

This improvement can be seen in each of the super-regions (Figure 6), with the most marked improve-
ments in areas where there is limited ground monitoring. Sensitivity analyses were performed to assess
the effects of the given allocation of countries to regions. Repeating the analyses after switching a
selection of countries that lay on regional borders to their adjacent region did not produce any dis-
cernible differences in the results.

Adding either estimates of PM2.5 from the TM5-FASST chemical transport model; model (iii), or
estimates of specific chemical components (SNAOC) and dust (DUST) from the GEOS-Chem chem-
ical transport model together with information on differences in elevation between a ground monitor
and its surrounding grid cell (ED × DU); model (iv), to this resulted in further improvements with
model (iv) showing the most improvement. Although it resulted in a reduction in the DIC, adding the
estimates of PM2.5 from the TM5-FASST chemical transport model to model (iv) did not result in any
substantial improvement in predictive ability. This may be in part due to the fact that the variables
used in model (iv) are for 2014 whereas the estimates from the TM5-FASST model are from 2010.
Considering the lack in improvement of predictive ability and the increased complexity and computa-
tional burden involved when incorporating an additional set of random effects, these estimates are not
not included in the final model (model (iv)).

Predictions from the final model (model (iv)) can be seen in Figures 7a and 7b. The point esti-
mates shown in Figure 7a give a summary of air quality for each grid cell and show clearly the spatial
variation in global PM2.5. For each grid cell, there is an underlying (posterior) probability distribution
which incorporates information about the uncertainty of these estimates. There are a number of ways
of presenting this uncertainty and Figure 7b shows one of these; half of the length of the 95% credible
intervals (Denby et al., 2007). Here, higher uncertainty is associated with a combination of sparsity of
monitoring data and higher concentrations, examples of which can seen in areas of North Africa and
the Middle East.
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Figure 6: Summaries of predictive ability of the GBD2013 model (i) and four candidate models (ii-iv),
for each of seven super–regions: 1, high income; 2, Central Europe, Eastern Europe, Central Asia; 3,
Latin America and Caribbean; 4, Southeast Asia, East Asia and Oceania; 5, North Africa / Middle
East; 6, Sub-Saharan Africa; 7, South Asia. For each model, population weighted root mean squared
errors (µgm−3) are given with dots denoting the median of the distribution from 25 training/evaluation
sets and the vertical lines the range of values.
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Model R2 DIC RMSE† PwRMSE†
(i) 0.54 (0.53, 0.54) 7828 (7685, 8657) 17.1 (16.5, 18.1) 23.1 (20.5, 29.3)
(ii) 0.90 (0.90, 0.91) 1105 (849, 1239) 11.2 (10.1, 12.9) 13.0 (11.5, 23.5)
(iii) 0.90 (0.90, 0.91) 986 (704, 1115) 11.1 (10.0, 13.3) 12.8 (11.2, 23.0)
(iv) 0.91 (0.90, 0.91) 877 (640, 1015) 10.7 (9.5, 12.3) 12.1 (10.7, 21.4)
(v) 0.91 (0.90, 0.92) 777 (508, 919) 10.7 (9.5, 12.5) 12.0 (10.7, 20.7)

† µgm−3

Table 2: Summary of results from fitting five candidate models described in Table 1. Results are
presented for both in-sample model fit and out-of-sample predictive ability and are the median (min-
imum, maximum) values from 25 training-validation set combinations. For within sample model fit,
R2 and Deviance Information Criteria (DIC) are given and for out-of-sample predictive ability, root
mean squared error (RMSE) and population weighted root mean squared error (PwRMSE).

The distributions for each cell can also be used to examine the probabilities of exceeding particular
thresholds. Figure 8 shows an example of this and contains predicted concentrations for China (Figure
8a) together with the probability for each cell that the value exceeds 35 µgm−3 (Figure 8b) and 75
µgm−3 (Figure 8c). High probabilities of exceeding the greater of the two thresholds are observed in
the area around Beijing and in the Xinjiang province in the far west of the country. For the latter,
a substantial component of the high (estimated) concentrations will be due to mineral dust from the
large deserts in the region, as can be seen in Figure 3c. The distribution of estimated exposures shown
in the map of median values (of the marginal posterior distributions) shown in Figure 8a can also
be seen in Figure 9a which the profile of air pollution (PM2.5) in this country contains three distinct
components: (i) a land mass with low levels of air pollution; (ii) a much larger proportion of the
total land mass with (comparatively) high levels; and (iii) a substantial area with very high levels.
In terms of potential risks to health, it is high levels in areas of high population that will drive the
disease burden. Figure 9b shows the distribution of estimated population level exposures, calculated
by multiplying the estimate in each grid cell by its population. It can be seen that only a small
proportion of the population reside in areas with the lowest concentrations with the vast majority of
the population experiencing much higher levels of PM2.5.

5 Discussion
In this paper we have developed a model to produce a comprehensive set of high-resolution estimates
of exposures to fine particulate matter. The approach builds on that used for the GBD2013 project
that calibrated ground measurements against estimates obtained from satellites and a chemical trans-
port model using linear regression. This allowed data from the three sources to be utilised, but only
provided an informal analysis of the uncertainty associated with the resulting estimates of exposure.
There was also limited scope for considering changes in the calibration functions between geographical
regions. As discussed in Brauer et al. (2015), the increase in the availability of ground measurements
has increased the feasibility of allowing spatially varying calibration functions. This was performed us-
ing geographically weighted regression in Van Donkelaar et al. (2016), but here a hierarchical modelling
approach is used in which country-specific calibration functions are used and information ‘borrowed’
from the surrounding region and super–region where local monitoring data is inadequate for stable es-
timation of the coefficients in the calibration models. This is achieved using sets of random effects, for
countries within regions within super–regions, reflecting a nested geographical hierarchy. The models
are fitted within a Bayesian hierarchical framework which produces full posterior distributions for esti-
mated levels of PM2.5 for each grid cell rather than just point estimates. Summaries of these posterior
distributions can be used to give point estimates, e.g, medians and medians, together with measures of
uncertainty, e.g. 95% credible intervals. They can also be used to estimate exceedance probabilities,
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(a) Medians of posterior distributions.

(b) Half the width of 95% posterior credible intervals.

Figure 7: Estimates of annual averages of PM2.5 (µgm−3) for 2014 together with associated uncertainty
for each grid cell (0.1

◦ × 0.1
◦
resolution) using a Bayesian hierarchical model (see text for details).
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(a) Medians of posterior distributions.

(b) Probability of exceeding 35 µgm−3.

(c) Probability of exceeding 75 µgm−3.

Figure 8: Estimates of annual mean PM2.5 concentrations (µgm−3) for 2014 together with exceedance
probabilities using a Bayesian hierarchical model (see text for details) for each grid cell (0.1

◦ × 0.1
◦

resolution) in China.
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(b) Estimated population level exposures (blue bars)
and, for cells containing at least one monitoring
station, population weighted measurements from
ground monitors (black bars).

Figure 9: Distributions of annual mean concentrations and population level exposures for PM2.5

(µgm−3) in China.
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e.g. the probability of exceeding air quality guidelines. Based on posterior estimates (medians for each
grid cell), it is estimated that 92% of the world’s population reside in grid cells for which the annual
average is greater than the WHO guideline of 10 µgm−3, which is greater than the 87% reported in
Brauer et al. (2015) for 2013.

In addition to the hierarchical approach to modelling used here, the increased availability of ground
monitoring data has been utilised in the analysis. Ground measurements were available from 6003 lo-
cations (compared with 4073 for GBD2013) and, in addition, estimates of specific components of air
pollution, including mineral dust and the sum of sulphate, nitrate, ammonium and organic carbon,
were available from atmospheric models. A series of candidate models, containing different sets of
variables and structures for the random effects, were considered with the final choice of model being
made on predictive ability. This was assessed by cross-validation in which models were fitted to 25
training datasets (each containing 80% the overall data with stratified sampling to ensure samples were
representative in terms of the distribution of concentrations within each super–region) and predictions
compared to measurements within the corresponding validation set. The final model contained infor-
mation on local network characteristics, including whether PM2.5 was measured or values converted
from PM10, and whether the exact site type and location were known, together with satellite-based
estimates, estimates of specific components from the GEOS-Chem chemical transport model, land use
and elevation, and population. The final model includes country-level (within region, within super–
region) random effects for satellite-based estimates and neighbouring country level random effects for
population, with interactions between the fixed effects for variables and those reflecting local network
characteristics. Notably, the estimates of PM2.5 from the TM5-FASST model used in GBD2013 were
not found to improve the predictive ability and they were not included in the final model. In prefer-
ence, estimates of specific components of pollution and the interaction between altitude and land–use
from Van Donkelaar et al. (2016) were found to provide marked improvements in predictively ability
and are included in the model.

The model presented here has been shown to offer improved estimates of PM2.5 but there is cer-
tainly room for improvement, especially in areas such as Sub-Saharan Africa and South Asia. One of
the potential uses of the outputs from the model, i.e. the information on areas with high predicted
exposures and high uncertainty shown in Figures 7 and 8, would be to guide where future monitoring
efforts might be focused. It may also be possible to utilise other sources of information related to air
quality in addition to those considered here, such as road networks and other land–use variables.

In the current implementation, a single annual average of ground measurements is used for each
monitoring location. For 2014, 46% of the measurements from the WHO cities database come from
that year with the remainder coming from the closest year for which data were available. This results
in 82% of the measurements coming from 2014 or 2013 with the majority of the remainder coming
from the period 2010-2012. As monitoring networks develop, in some areas there will be the possibility
of multiple measurements at specific locations over time and future developments of the model might
include a temporal component that would acknowledge the temporal aspect of the data, possibly with
lower weight given to less recent measurements. At present, one approach to reducing the issues that
might arise when comparing measurements from locations in close proximity where there are differ-
ences over time, would be to only use data from the most recent years. However, such data is often
not available in precisely the regions where ground measurements are most needed to produce accurate
calibration functions.

In the calibration approach used here there is an implicit assumption the covariates are error free,
an assumption that may be untenable in practice. When integrating data from many different sources,
each source will have its own error structures and spatially varying biases. For example, the estimates
of PM2.5 from satellite retrievals and the estimates of specific components from the chemical transport
are all the result of modelling and, as such, will be subject to uncertainties and biases arising from
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errors in inputs and possible model misspecification. Therefore, a Bayesian melding approach may
be more suitable in this setting, in which each source of information is assumed to be related to an
underlying ‘true’ level of pollution (at any location) with additive and multiplicative bias terms. In
addition, Bayesian melding allows provides a coherent framework in which data from different sources
at different levels of aggregation can be integrated, and allows for prediction at any required level of
aggregation with associated estimates of uncertainty.

However, Bayesian melding is complex to implement and can be very computationally demanding,
particularly using Markov chain Monte Carlo (MCMC), due to the requirement to perform a stochastic
integral of the underlying continuous process to the resolution of the grid cells, for each grid cell. In
contrast, one of the major advantages of downscaling is the computational saving that is made by only
considering grid cells containing measurement locations within the estimation, after which prediction
at unknown locations is relatively straightforward (Chang, 2016). In its current incarnation, using
MCMC, Bayesian melding is computationally infeasible for large-scale problems of this type. Future
research will involve developing computationally efficient methods for performing Bayesian melding,
using approximate Bayesian inference.

In summary, this work presents an important step forward in large-scale data integration in this
setting, allowing information on air quality to be drawn from a wide variety of sources, each potentially
measured at different resolutions, with different error structures and with different levels of uncertainty.
Ultimately, this will lead to more accurate estimates of air quality together with measures of uncertainty
that acknowledge the uncertainty associated with the individual data sources. This information can
also be incorporated within a health effects model leading to improved characterisation of uncertainty
when estimating disease burden. This in turn will lead to increased understanding of the effects of air
pollution on health and the potential effects of mitigation strategies.
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