378 research outputs found

    Body tides on an elliptical rotating earth

    Get PDF
    The complete tidal response of an elliptical, rotating, elastic Earth is found to contain small displacements which do not fit into the conventional Love number framework. Corresponding observable tidal quantities (gravity, tilt, strain, Eulerian potential, etc.) are modified by the addition of small latitude dependent terms

    Будівельна лихоманка на Київських схилах

    Get PDF
    Forty marine-terminating glaciers have been surveyed daily since 2000 using cloud-free MODIS visible imagery (Box and Decker 2011; http://bprc. osu.edu/MODIS/). The net area change of the 40 glaciers during the period of observation has been -1775 km2, with the 18 northernmost (>72°N) glaciers alone contributing to half of the net area change. In 2012, the northernmost glaciers lost a collective area of 255 km2, or 86% of the total net area change of the 40 glaciers surveyed. The six glaciers with the largest net area loss in 2012 were Petermann (-141 km2), 79 glacier (-27 km2), Zachariae (-26 km2), Steenstrup (-19 km2), Steensby (-16 km2, the greatest retreat since observations began), and Jakobshavn (-13 km2). While the total area change was negative in 2012, the area of four of the forty glaciers did increase relative to the end of the 2011 melt season. The anomalous advance of these four glaciers is not easily explained, as the mechanisms controlling the behavior of individual glaciers are uncertain due to their often unique geographic!settings

    Methods for removal of unwanted signals from gravity time-series : comparison using linear techniques complemented with analysis of system dynamics

    Get PDF
    We thanks the participants of the 35th General Assembly of the European Seismological Commission for comments on preliminary results. The authors are grateful to all IGETS contributors, particularly to the station operators and to ISDC/GFZ-Potsdam for providing the original gravity data used in this study. We also thank the developers of ATLANTIDA3.1 and UTide. Part of this work was performed using the ICSMB High Performance Computing Cluster, University of Aberdeen. We also thanks M. Thiel and A. Moura for reviewing a preliminary version and making comments on the methods section and M.A. Ara´ujo for comments on Lyapunov exponents. Funding: A. Valencio is supported by CNPq, Brazil [206246/2014-5]; and received a travel grant from the School of Natural and Computing Sciences, University of Aberdeen [PO2073498], for a presentation including preliminary results.Peer reviewedPostprintPublisher PD

    Tidal friction in close-in satellites and exoplanets. The Darwin theory re-visited

    Full text link
    This report is a review of Darwin's classical theory of bodily tides in which we present the analytical expressions for the orbital and rotational evolution of the bodies and for the energy dissipation rates due to their tidal interaction. General formulas are given which do not depend on any assumption linking the tidal lags to the frequencies of the corresponding tidal waves (except that equal frequency harmonics are assumed to span equal lags). Emphasis is given to the cases of companions having reached one of the two possible final states: (1) the super-synchronous stationary rotation resulting from the vanishing of the average tidal torque; (2) the capture into a 1:1 spin-orbit resonance (true synchronization). In these cases, the energy dissipation is controlled by the tidal harmonic with period equal to the orbital period (instead of the semi-diurnal tide) and the singularity due to the vanishing of the geometric phase lag does not exist. It is also shown that the true synchronization with non-zero eccentricity is only possible if an extra torque exists opposite to the tidal torque. The theory is developed assuming that this additional torque is produced by an equatorial permanent asymmetry in the companion. The results are model-dependent and the theory is developed only to the second degree in eccentricity and inclination (obliquity). It can easily be extended to higher orders, but formal accuracy will not be a real improvement as long as the physics of the processes leading to tidal lags is not better known.Comment: 30 pages, 7 figures, corrected typo

    Astrometry and geodesy with radio interferometry: experiments, models, results

    Full text link
    Summarizes current status of radio interferometry at radio frequencies between Earth-based receivers, for astrometric and geodetic applications. Emphasizes theoretical models of VLBI observables that are required to extract results at the present accuracy levels of 1 cm and 1 nanoradian. Highlights the achievements of VLBI during the past two decades in reference frames, Earth orientation, atmospheric effects on microwave propagation, and relativity.Comment: 83 pages, 19 Postscript figures. To be published in Rev. Mod. Phys., Vol. 70, Oct. 199

    Acceleration of Greenland ice mass loss in spring 2004

    Full text link
    In 2001 the Intergovernmental Panel on Climate Change projected the contribution to sea level rise from the Greenland ice sheet to be between -0.02 and +0.09 m from 1990 to 2100 (ref. 1). However, recent work has suggested that the ice sheet responds more quickly to climate perturbations than previously thought, particularly near the coast. Here we use a satellite gravity survey by the Gravity Recovery and Climate Experiment (GRACE) conducted from April 2002 to April 2006 to provide an independent estimate of the contribution of Greenland ice mass loss to sea level change. We detect an ice mass loss of 248 +/- 36 km3 yr(-1), equivalent to a global sea level rise of 0.5 +/- 0.1 mm yr(-1). The rate of ice loss increased by 250 per cent between the periods April 2002 to April 2004 and May 2004 to April 2006, almost entirely due to accelerated rates of ice loss in southern Greenland; the rate of mass loss in north Greenland was almost constant. Continued monitoring will be needed to identify any future changes in the rate of ice loss in Greenland

    Bodily tides near spin-orbit resonances

    Full text link
    Spin-orbit coupling can be described in two approaches. The method known as "the MacDonald torque" is often combined with an assumption that the quality factor Q is frequency-independent. This makes the method inconsistent, because the MacDonald theory tacitly fixes the rheology by making Q scale as the inverse tidal frequency. Spin-orbit coupling can be treated also in an approach called "the Darwin torque". While this theory is general enough to accommodate an arbitrary frequency-dependence of Q, this advantage has not yet been exploited in the literature, where Q is assumed constant or is set to scale as inverse tidal frequency, the latter assertion making the Darwin torque equivalent to a corrected version of the MacDonald torque. However neither a constant nor an inverse-frequency Q reflect the properties of realistic mantles and crusts, because the actual frequency-dependence is more complex. Hence the necessity to enrich the theory of spin-orbit interaction with the right frequency-dependence. We accomplish this programme for the Darwin-torque-based model near resonances. We derive the frequency-dependence of the tidal torque from the first principles, i.e., from the expression for the mantle's compliance in the time domain. We also explain that the tidal torque includes not only the secular part, but also an oscillating part. We demonstrate that the lmpq term of the Darwin-Kaula expansion for the tidal torque smoothly goes through zero, when the secondary traverses the lmpq resonance (e.g., the principal tidal torque smoothly goes through nil as the secondary crosses the synchronous orbit). We also offer a possible explanation for the unexpected frequency-dependence of the tidal dissipation rate in the Moon, discovered by LLR
    corecore