6,567 research outputs found
An X-ray Study of Two B+B Binaries: AH Cep and CW Cep
AH Cep and CW Cep are both early B-type binaries with short orbital periods
of 1.8~d and 2.7~d, respectively. All four components are B0.5V types. The
binaries are also double-lined spectroscopic and eclipsing. Consequently,
solutions for orbital and stellar parameters make the pair of binaries ideal
targets for a study of the colliding winds between two B~stars. {\em Chandra}
ACIS-I observations were obtained to determine X-ray luminosities. AH~Cep was
detected with an unabsorbed X-ray luminosity at a 90\% confidence interval of
erg s, or ,
relative to the combined Bolometric luminosities of the two components. While
formally consistent with expectations for embedded wind shocks, or binary wind
collision, the near-twin system of CW~Cep was a surprising non-detection. For
CW~Cep, an upper limit was determined with , again
for the combined components. One difference between these two systems is that
AH~Cep is part of a multiple system. The X-rays from AH~Cep may not arise from
standard wind shocks nor wind collision, but perhaps instead from magnetism in
any one of the four components of the system. The possibility could be tested
by searching for cyclic X-ray variability in AH~Cep on the short orbital period
of the inner B~stars.Comment: Astrophysical Journal, accepte
Magnetic properties of iron pnictides from spin-spiral calculations
The wave-vector (q) and doping dependences of the magnetic energy, iron
moment, and effective exchange interactions in LaFeAsO, BaFe2As2, and SrFe2As2\
are studied by self-consistent LSDA calculations for co-planar spin spirals.
For the undoped compounds, the calculated total energy, E(q), reaches its
minimum at q corresponding to stripe anti-ferromagnetic order. In LaFeAsO, this
minimum becomes flat already at low levels of electron-doping and shifts to an
incommensurate q at delta=0.2, where delta is the number of additional
electrons (delta>0) or holes (delta<0) per Fe. In BaFe2As2 and SrFe2As2, stripe
order remains stable for hole doping down to delta=-0.3. Under electron doping,
on the other hand, the E(q) minimum shifts to incommensurate q already at
delta=0.1.Comment: 4 pages, 2 figures, International Conference on Magnetism, Karlsruhe,
July 26 - 31, 200
Quantum interference from remotely trapped ions
We observe quantum interference of photons emitted by two continuously
laser-excited single ions, independently trapped in distinct vacuum vessels.
High contrast two-photon interference is observed in two experiments with
different ion species, calcium and barium. Our experimental findings are
quantitatively reproduced by Bloch equation calculations. In particular, we
show that the coherence of the individual resonance fluorescence light field is
determined from the observed interference
Non-retracing orbits in Andreev billiards
The validity of the retracing approximation in the semiclassical quantization
of Andreev billiards is investigated. The exact energy spectrum and the
eigenstates of normal-conducting, ballistic quantum dots in contact with a
superconductor are calculated by solving the Bogoliubov-de Gennes equation and
compared with the semiclassical Bohr-Sommerfeld quantization for periodic
orbits which result from Andreev reflections. We find deviations that are due
to the assumption of exact retracing electron-hole orbits rather than the
semiclassical approximation, as a concurrently performed
Einstein-Brillouin-Keller quantization demonstrates. We identify three
different mechanisms producing non-retracing orbits which are directly
identified through differences between electron and hole wave functions.Comment: 9 pages, 12 figures, Phys. Rev. B (in print), high resolution images
available upon reques
Magnetic ordering in GdNi2B2C revisited by resonant x-ray scattering: evidence for the double-q model
Recent theoretical efforts aimed at understanding the nature of
antiferromagnetic ordering in GdNi2B2C predicted double-q ordering. Here we
employ resonant elastic x-ray scattering to test this theory against the
formerly proposed, single-q ordering scenario. Our study reveals a satellite
reflection associated with a mixed-order component propagation wave vector,
viz., (q_a,2q_b,0) with q_b = q_a approx= 0.55 reciprocal lattice units, the
presence of which is incompatible with single-q ordering but is expected from
the double-q model. A (3q_a,0,0) wave vector (i.e., third-order) satellite is
also observed, again in line with the double-q model. The temperature
dependencies of these along with that of a first-order satellite are compared
with calculations based on the double-q model and reasonable qualitative
agreement is found. By examining the azimuthal dependence of first-order
satellite scattering, we show the magnetic order to be, as predicted,
elliptically polarized at base temperature and find the temperature dependence
of the "out of a-b plane" moment component to be in fairly good agreement with
calculation. Our results provide qualitative support for the double-q model and
thus in turn corroborate the explanation for the "magnetoelastic paradox"
offered by this model.Comment: 8 pages, 5 figures. Submitted to Phys. Rev.
Nano-wires with surface disorder: Giant localization lengths and dynamical tunneling in the presence of directed chaos
We investigate electron quantum transport through nano-wires with one-sided
surface roughness in the presence of a perpendicular magnetic field.
Exponentially diverging localization lengths are found in the
quantum-to-classical crossover regime, controlled by tunneling between regular
and chaotic regions of the underlying mixed classical phase space. We show that
each regular mode possesses a well-defined mode-specific localization length.
We present analytic estimates of these mode localization lengths which agree
well with the numerical data. The coupling between regular and chaotic regions
can be determined by varying the length of the wire leading to intricate
structures in the transmission probabilities. We explain these structures
quantitatively by dynamical tunneling in the presence of directed chaos.Comment: 15 pages, 12 figure
Recommended from our members
Towards design rules for rectangular silo filling pressures
An experimentally validated finite element model of filling pressures in rectangular silos with flexible walls is used to predict the stress regime in the stored solid in squat and intermediate aspect ratio silos. The model predicts the state of stress in the stored solid and the pressures imposed on the flexible walls of the silo. The non-uniform horizontal pressure distributions at each depth at the end of filling are explored. It is known that an empirical relation for the horizontal pressure variation on each straight wall derived from experimental observations in an earlier study closely matches the computational predictions. The coefficients of this relation are found to vary with depth below the stored solid surface, and depend on the relative stiffness of stored solid and the silo wall. Following many calculations involving different solids, an empirical relationship is derived that is suitable for practical design for a range of different stored solids for which relevant properties are known. The resulting expression is well suited to the practical determination of filling pressures in rectangular silos, and provides a silo design pressure proposal that is based on theoretical, rather than empirical findings
Magnetic excitations in multiferroic LuMnO3 studied by inelastic neutron scattering
We present data on the magnetic and magneto-elastic coupling in the hexagonal
multiferroic manganite LuMnO3 from inelastic neutron scattering, magnetization
and thermal expansion measurements. We measured the magnon dispersion along the
main symmetry directions and used this data to determine the principal exchange
parameters from a spin-wave model. An analysis of the magnetic anisotropy in
terms of the crystal field acting on the Mn is presented. We compare the
results for LuMnO3 with data on other hexagonal RMnO3 compounds.Comment: 7 pages, 8 figures, typo correcte
- …