11,893 research outputs found
FRW in cosmological self-creation theory: Hamiltonian approach
We use the Brans-Dicke theory from the framework of General Relativity
(Einstein frame), but now the total energy momentum tensor fulfills the
following condition . We take as a first model the flat FRW metric in the
Hamilton-Jacobi scheme and we present the Lagrange-Charpit approach in order to
find classical solutions. In the quantum scheme, once we determine the
characteristic surfaces, the quantum solution is obtained. These two classes of
solutions are found for all values of the barotropic parameter .Comment: 9 pages, latex2e. arXiv admin note: substantial text overlap with
arXiv:1206.541
Chandra LETGS spectroscopy of the Quasar MR2251-178 and its warm absorber
We present an analysis of our Chandra Low Energy Transmission Grating
Spectrometer (LETGS) observation of the quasar MR2251-178. The warm absorber of
MR2251-178 is well described by a hydrogen column density, N_H~2x10^21 cm^-2,
and an ionization parameter log(xi)~0.6. We find in the spectrum weak evidence
for narrow absorption lines from Carbon and Nitrogen which indicate that the
ionized material is in outflow. We note changes (in time) of the absorption
structure in the band (0.6-1) keV (around the UTAs plus the OVII and OVIII
K-edges) at different periods of the observation. We measure a (0.1-2) keV flux
of 2.58x10^-11 ergs cm^-2 s^-1. This flux implies that the nuclear source of
MR2251-178 is in a relatively low state. No significant variability is seen in
the light curve. We do not find evidence for an extra cold material in the line
of sight, and set an upper limit of N_H~1.2x10^20 cm^-2. The X-ray spectrum
does not appear to show evidence for dusty material, though an upper limit in
the neutral carbon and oxygen column densities can only be set to N_CI~2x10^19
cm^-2 and N_OI~9x10^19 cm^-2, respectively.Comment: 42 pages, 12 figures, Accepted in Apj. Typo in abstract (ver2): "We
do not find evidence for an extra...
The Two-Dimensional Stringy Black-Hole: A New Approach and a Pathology
The string propagation in the two-dimensional stringy black-hole is
investigated from a new approach. We completely solve the classical and quantum
string dynamics in the lorentzian and euclidean regimes. In the lorentzian case
all the physics reduces to a massless scalar particle described by a
Klein-Gordon type equation with a singular effective potential. The scattering
matrix is found and it reproduces the results obtained by coset CFT techniques.
It factorizes into two pieces : an elastic coulombian amplitude and an
absorption part. In both parts, an infinite sequence of imaginary poles in the
energy appear. The generic features of string propagation in curved
D-dimensional backgrounds (string stretching, fall into spacetime
singularities) are analyzed in the present case. A new physical phenomenon
specific to the present black-hole is found : the quantum renormalization of
the speed of light. We find c_{quantum} = \sqrt{{k\o{k-2}}}~c_{classical},
where is the integer in front of the WZW action. This feature is, however,
a pathology. Only for the pathology disappears (although the
conformal anomaly is present). We analyze all the classical euclidean string
solutions and exactly compute the quantum partition function. No critical
Hagedorn temperature appears here.Comment: 32 pages, uses phyzz
Searching for galactic sources in the Swift GRB catalog
Since the early 1990s Gamma Ray Bursts have been accepted to be of
extra-galactic origin due to the isotropic distribution observed by BATSE and
the redshifts observed via absorption line spectroscopy. Nevertheless, upon
further examination at least one case turned out to be of galactic origin. This
particular event presented a Fast Rise, Exponential Decay (FRED) structure
which leads us to believe that other FRED sources might also be Galactic. This
study was set out to estimate the most probable degree of contamination by
galactic sources that certain samples of FREDs have. In order to quantify the
degree of anisotropy the average dipolar and quadripolar moments of each sample
of GRBs with respect to the galactic plane were calculated. This was then
compared to the probability distribution of simulated samples comprised of a
combination of isotropically generated sources and galactic sources. We observe
that the dipolar and quadripolar moments of the selected subsamples of FREDs
are found more than two standard deviations outside those of random
isotropically generated samples.The most probable degree of contamination by
galactic sources for the FRED GRBs of the Swift catalog detected until February
2011 that do not have a known redshift is about 21 out of 77 sources which is
roughly equal to 27%. Furthermore we observe, that by removing from this sample
those bursts that may have any type of indirect redshift indicator and multiple
peaks gives the most probable contamination increases up to 34% (17 out of 49
sources). It is probable that a high degree of contamination by galactic
sources occurs among the single peak FREDs observed by Swift.Comment: Published to A&A, 4 pages, 5 figures, this arXiv version includes
appended table with all the bursts considered in this stud
Characterization of the known T type dwarfs towards the Sigma Orionis cluster
(Abridged) A total of three T type candidates (SOri70, SOri73, and
SOriJ0538-0213) lying in the line of sight towards Sigma Orionis were
characterized by means of near-infrared photometric, astrometric, and
spectroscopic studies. H-band methane images were collected for all three
sources and an additional sample of 15 field T type dwarfs using LIRIS/WHT.
J-band spectra of resolution of ~500 were obtained for SOriJ0538-0213 with
ISAAC/VLT, and JH spectra of resolution of ~50 acquired with WFC3/HST were
employed for the spectroscopic classification of SOri70 and 73. Proper motions
with a typical uncertainty of +/-3 mas/yr and a time interval of ~7-9 yr were
derived. Using the LIRIS observations of the field T dwarfs, we calibrated this
imager for T spectral typing via methane photometry. The three SOri objects
were spectroscopically classified as T4.5+/-0.5 (SOri73), T5+/-0.5
(SOriJ0538-0213), and T7 (SOri70). The similarity between the
observed JH spectra and the methane colors and the data of field ultra-cool
dwarfs of related classifications suggests that SOri70, 73, and
SOriJ053804.65-021352.5 do not deviate significantly in surface gravity in
relation to the field. Additionally, the detection of KI at ~1.25 microns in
SOriJ0538-0213 points to a high-gravity atmosphere. Only the K-band reddish
nature of SOri70 may be consistent with a low gravity atmosphere. The proper
motions of SOri70 and 73 are measurable and are larger than that of the cluster
by >3.5 sigma. The proper motion of SOriJ0538-0213 is consistent with a null
displacement. These observations suggest that none of the three T dwarfs are
likely Sigma Orionis members, and that either planetary-mass objects with
masses below ~4 MJup may not exist free-floating in the cluster or they may lie
at fainter near-infrared magnitudes than those of the targets (this is H>20.6
mag), thus remaining unidentified to date.Comment: Accepted for publication in A&A (2014), corrected typo
Hints on the quadrupole deformation of the (1232)
The E2/M1 ratio (EMR) of the (1232) is extracted from the world data
in pion photoproduction by means of an Effective Lagrangian Approach (ELA).This
quantity has been derived within a crossing symmetric, gauge invariant, and
chiral symmetric Lagrangian model which also contains a consistent modern
treatment of the (1232) resonance. The \textit{bare} s-channel
(1232) contribution is well isolated and Final State Interactions (FSI)
are effectively taken into account fulfilling Watson's theorem. The obtained
EMR value, EMR%, is in good agreement with the latest lattice
QCD calculations [Phys. Rev. Lett. 94, 021601 (2005)] and disagrees with
results of current quark model calculations.Comment: Enlarged conclusions and explanations on the E2/M1 ratio. Figure 3
improved. References updated. 5 pages. 3 figures. 2 tables. Accepted for
publication in Physical Review
- …