506 research outputs found

    Persistent Decadal-Scale Rainfall Variability in the Tropical South Pacific Convergence Zone Through the Past Six Centuries

    Get PDF
    Modern Pacific decadal variability (PDV) has global impacts; hence records of PDV from the pre-instrumental period are needed to better inform models that are used to project future climate variability. We focus here on reconstructing rainfall in the western tropical Pacific (Solomon Islands; similar to 9.5 degrees S, similar to 160 degrees E), a region directly influenced by PDV, using cave deposits (stalagmite). A relationship is developed between delta O-18 variations in the stalagmite and local rainfall amount to produce a 600 yr record of rainfall variability from the South Pacific Convergence Zone (SPCZ). We present evidence for large (similar to 1.5 m), abrupt, and periodic changes in total annual rainfall amount on decadal to multidecadal timescales since 1423 +/- 5 CE (Common Era) in the Solomon Islands. The timing of the decadal changes in rainfall inferred from the 20th-century portion of the stalagmite delta O-18 record coincides with previously identified decadal shifts in PDV-related Pacific ocean-atmosphere behavior (Clement et al., 2011; Deser et al., 2004). The Solomons record of PDV is not associated with variations in external forcings, but rather results from internal climate variability. The 600 yr Solomon Islands stalagmite delta O-18 record indicates that decadal oscillations in rainfall are a persistent characteristic of SPCZ-related climate variability.Taiwan ROC NSCNTU 101-2116-M-002-009, 102-2116-M-002-016, 101R7625Geological Science

    Staphylococcus aureus with reduced susceptibility to vancomycin isolated from a patient with fatal bacteremia.

    Get PDF
    A Staphylococcus aureus isolate with reduced susceptibility to vancomycin was obtained from a dialysis patient with a fatal case of bacteremia. Comparison of the isolate with two methicillin-resistant S. aureus (MRSA) isolated obtained from the same patient 4 months earlier suggests that the S. aureus with reduced susceptibility to vancomycin emerged from the MRSA strain with which the patient was infected. Atypical phenotypic characteristics, including weak or negative latex-agglutination test results, weak or negative-slide coagulase test results, heterogeneous morphologic features, slow rate of growth, and vancomycin susceptibility (by disk diffusion test) were observed

    Error mitigation, optimization, and extrapolation on a trapped ion testbed

    Full text link
    Current noisy intermediate-scale quantum (NISQ) trapped-ion devices are subject to errors around 1% per gate for two-qubit gates. These errors significantly impact the accuracy of calculations if left unchecked. A form of error mitigation called Richardson extrapolation can reduce these errors without incurring a qubit overhead. We demonstrate and optimize this method on the Quantum Scientific Computing Open User Testbed (QSCOUT) trapped-ion device to solve an electronic structure problem. We explore different methods for integrating this error mitigation technique into the Variational Quantum Eigensolver (VQE) optimization algorithm for calculating the ground state of the HeH+ molecule at 0.8 Angstrom. We test two methods of scaling noise for extrapolation: time-stretching the two-qubit gates and inserting two-qubit gate identity operations into the ansatz circuit. We find the former fails to scale the noise on our particular hardware. Scaling our noise with global gate identity insertions and extrapolating only after a variational optimization routine, we achieve an absolute relative error of 0.363% +- 1.06 compared to the true ground state energy of HeH+. This corresponds to an absolute error of 0.01 +- 0.02 Hartree; outside chemical accuracy, but greatly improved over our non error mitigated estimate. We ultimately find that the efficacy of this error mitigation technique depends on choosing the right implementation for a given device architecture and sampling budget.Comment: 16 pages, 11 figure

    A widespread riboswitch candidate that controls bacterial genes involved in molybdenum cofactor and tungsten cofactor metabolism

    Get PDF
    We have identified a highly conserved RNA motif located upstream of genes encoding molybdate transporters, molybdenum cofactor (Moco) biosynthesis enzymes, and proteins that utilize Moco as a coenzyme. Bioinformatics searches have identified 176 representatives in γ-Proteobacteria, δ-Proteobacteria, Clostridia, Actinobacteria, Deinococcus-Thermus species and DNAs from environmental samples. Using genetic assays, we demonstrate that a Moco RNA in Escherichia coli associated with the Moco biosynthetic operon controls gene expression in response to Moco production. In addition, we provide evidence indicating that this conserved RNA discriminates against closely related analogues of Moco. These results, together with extensive phylogenetic conservation and typical gene control structures near some examples, indicate that representatives of this structured RNA represent a novel class of riboswitches that sense Moco. Furthermore, we identify variants of this RNA that are likely to be triggered by the related tungsten cofactor (Tuco), which carries tungsten in place of molybdenum as the metal constituent

    Evaluation of night-time aerosols measurements and lunar irradiance models in the frame of the first multi-instrument nocturnal intercomparison campaign

    Get PDF
    The first multi-instrument nocturnal aerosol optical depth (AOD) intercom-parison campaign was held at the high-mountain Iza ̃na Observatory (Tener-ife, Spain) in June 2017, involving 2-minutes synchronous measurements fromtwo different types of lunar photometers (Cimel CE318-T and Moon Preci-sion Filter Radiometer, LunarPFR) and one stellar photometer. The Robotic Lunar Observatory (ROLO) model developed by the U.S. Geological Survey(USGS) was compared with the open-access ROLO Implementation for Moonphotometry Observation (RIMO) model. Results showed rather small differ-ences at Iza ̃na over a 2-month time period covering June and July, 2017(±0.01 in terms of AOD calculated by means of a day/night/day coherencetest analysis and±2 % in terms of lunar irradiance). The RIMO model hasbeen used in this field campaign to retrieve AOD from lunar photometricmeasurements. No evidence of significant differences with the Moon’s phase angle wasfound when comparing raw signals of the six Cimel photometers involved inthis field campaign.The raw signal comparison of the participating lunar photometers (Cimeland LunarPFR) performed at coincident wavelengths showed consistent mea-surements and AOD differences within their combined uncertainties at 870 nmand 675 nm. Slightly larger AOD deviations were observed at 500 nm, point-ing to some unexpected instrumental variations during the measurement pe-riod.Lunar irradiances retrieved using RIMO for phase angles varying between0◦and 75◦(full Moon to near quarter Moon) were compared to the irradi-ance variations retrieved by Cimel and LunarPFR photometers. Our resultsshowed a relative agreement within±3.5 % between the RIMO model andthe photometer-based lunar irradiances.The AOD retrieved by performing a Langley-plot calibration each nightshowed a remarkable agreement (better than 0.01) between the lunar pho-tometers. However, when applying the Lunar-Langley calibration using RIMO,AOD differences of up to 0.015 (0.040 for 500 nm) were found, with differ-ences increasing with the Moon’s phase angle. These differences are thoughtto be partly due to the uncertainties in the irradiance models, as well asinstrumental deficiencies yet to be fully understood.High AOD variability in stellar measurements was detected during thecampaign. Nevertheless, the observed AOD differences in the Cimel/stellarcomparison were within the expected combined uncertainties of these twophotometric techniques. Our results indicate that lunar photometry is amore reliable technique, especially for low aerosol loading conditions.The uncertainty analysis performed in this paper shows that the com-bined standard AOD uncertainty in lunar photometry is dependent on thecalibration technique (up to 0.014 for Langley-plot with illumination-basedcorrection, 0.012-0.022 for Lunar-Langley calibration, and up to 0.1 for the 2 Sun-Moon Gain Factor method). This analysis also corroborates that theuncertainty of the lunar irradiance model used for AOD calculation is withinthe 5-10 % expected range.This campaign has allowed us to quantify the important technical diffi-culties that still exist when routinely monitoring aerosol optical propertiesat night-time. The small AOD differences observed between the three typesof photometers involved in the campaign are only detectable under pristinesky conditions such as those found in this field campaign. Longer campaignsare necessary to understand the observed discrepancies between instrumentsas well as to provide more conclusive results about the uncertainty involvedin the lunar irradiance model
    corecore