4,396 research outputs found

    Heavy particle concentration in turbulence at dissipative and inertial scales

    Get PDF
    Spatial distributions of heavy particles suspended in an incompressible isotropic and homogeneous turbulent flow are investigated by means of high resolution direct numerical simulations. In the dissipative range, it is shown that particles form fractal clusters with properties independent of the Reynolds number. Clustering is there optimal when the particle response time is of the order of the Kolmogorov time scale τη\tau_\eta. In the inertial range, the particle distribution is no longer scale-invariant. It is however shown that deviations from uniformity depend on a rescaled contraction rate, which is different from the local Stokes number given by dimensional analysis. Particle distribution is characterized by voids spanning all scales of the turbulent flow; their signature in the coarse-grained mass probability distribution is an algebraic behavior at small densities.Comment: 4 RevTeX pgs + 4 color Figures included, 1 figure eliminated second part of the paper completely revise

    Superdiffusion of massive particles induced by multi-scale velocity fields

    Full text link
    We study drag-induced diffusion of massive particles in scale-free velocity fields, where superdiffusive behavior emerges due to the scale-free size distribution of the vortices of the underlying velocity field. The results show qualitative resemblance to what is observed in fluid systems, namely the diffusive exponent for the mean square separation of pairs of particles and the preferential concentration of the particles, both as a function of the response time.Comment: 5 pages, 5 figures. Accepted for publication in EP

    Simultaneous Observations of Comet C/2002 T7 (LINEAR) with the Berkeley-Illinois-Maryland Association and Owens Valley Radio Observatory Interferometers: HCN and CH_3OH

    Get PDF
    We present observations of HCN J = 1-0 and CH_3OH J(K_a, K_c) = 3(1, 3)-4(0, 4) A+ emission from comet C/2002 T7 (LINEAR) obtained simultaneously with the Owens Valley Radio Observatory (OVRO) and Berkeley-Illinois-Maryland Association (BIMA) millimeter interferometers. We combined the data from both arrays to increase the (u, v) sampling and signal to noise of the detected line emission. We also report the detection of CH_3OH J(K_a, K_c) = 8(0, 8)-7(1, 7) A^+ with OVRO data alone. Using a molecular excitation code that includes the effects of collisions with water and electrons, as well as pumping by the Solar infrared photons (for HCN alone), we find a production rate of HCN of 2.9 × 10^(26) s^(–1) and for CH_3OH of 2.2 × 10^(27) s^(–1). Compared to the adopted water production rate of 3 × 10^(29) s^(–1), this corresponds to an HCN/H_2O ratio of 0.1% and a CH_3OH/H_2O ratio of 0.7%. We critically assess the uncertainty of these values due to the noise (~10%), the uncertainties in the adopted comet model (~50%), and the uncertainties in the adopted collisional excitation rates (up to a factor of 2). Pumping by Solar infrared photons is found to be a minor effect for HCN, because our 15" synthesized beam is dominated by the region in the coma where collisions dominate. Since the uncertainties in the derived production rates are at least as large as one-third of the differences found between comets, we conclude that reliable collision rates and an accurate comet model are essential. Because the collisionally dominated region critically depends on the water production rate, using the same approximate method for different comets may introduce biases in the derived production rates. Multiline observations that directly constrain the molecular excitation provide much more reliable production rates

    Confirmation and Analysis of Circular Polarization from Sagittarius A*

    Full text link
    Recently Bower et al. (1999b) have reported the detection of circular polarization from the Galactic Center black hole candidate, Sagittarius A*. We provide an independent confirmation of this detection, and provide some analysis on the possible mechanisms.Comment: 14 pages, to appear in Astrophysical Journal Letter

    The Distribution, Excitation and Formation of Cometary Molecules: Methanol, Methyl Cyanide and Ethylene Glycol

    Full text link
    We present an interferometric and single dish study of small organic species toward Comets C/1995 O1 (Hale-Bopp) and C/2002 T7 (LINEAR) using the BIMA interferometer at 3 mm and the ARO 12m telescope at 2 mm. For Comet Hale-Bopp, both the single-dish and interferometer observations of CH3OH indicate an excitation temperature of 105+/-5 K and an average production rate ratio Q(CH3OH)/Q(H2O)~1.3% at ~1 AU. Additionally, the aperture synthesis observations of CH3OH suggest a distribution well described by a spherical outflow and no evidence of significant extended emission. Single-dish observations of CH3CN in Comet Hale-Bopp indicate an excitation temperature of 200+/-10 K and a production rate ratio of Q(CH3CN)/Q(H2O)~0.017% at ~1 AU. The non-detection of a previously claimed transition of cometary (CH2OH)2 toward Comet Hale-Bopp with the 12m telescope indicates a compact distribution of emission, D<9'' (<8500 km). For the single-dish observations of Comet T7 LINEAR, we find an excitation temperature of CH3OH of 35+/-5 K and a CH3OH production rate ratio of Q(CH3OH)/Q(H2O)~1.5% at ~0.3 AU. Our data support current chemical models that CH3OH, CH3CN and (CH2OH)2 are parent nuclear species distributed into the coma via direct sublimation off cometary ices from the nucleus with no evidence of significant production in the outer coma.Comment: accepted for publication in Ap

    Triplicity and Physical Characteristics of Asteroid (216) Kleopatra

    Full text link
    To take full advantage of the September 2008 opposition passage of the M-type asteroid (216) Kleopatra, we have used near-infrared adaptive optics (AO) imaging with the W.M. Keck II telescope to capture unprecedented high resolution images of this unusual asteroid. Our AO observations with the W.M. Keck II telescope, combined with Spitzer/IRS spectroscopic observations and past stellar occultations, confirm the value of its IRAS radiometric radius of 67.5 km as well as its dog-bone shape suggested by earlier radar observations. Our Keck AO observations revealed the presence of two small satellites in orbit about Kleopatra (see Marchis et al., 2008). Accurate measurements of the satellite orbits over a full month enabled us to determine the total mass of the system to be 4.64+/-0.02 10^18 Kg. This translates into a bulk density of 3.6 +/-0.4 g/cm3, which implies a macroscopic porosity for Kleopatra of ~ 30-50%, typical of a rubble-pile asteroid. From these physical characteristics we measured its specific angular momentum, very close to that of a spinning equilibrium dumbbell.Comment: 35 pages, 3 Tables, 9 Figures. In press to Icaru

    A Giant Outburst at Millimeter Wavelengths in the Orion Nebula

    Full text link
    BIMA observations of the Orion nebula discovered a giant flare from a young star previously undetected at millimeter wavelengths. The star briefly became the brightest compact object in the nebula at 86 GHz. Its flux density increased by more than a factor of 5 on a timescale of hours, to a peak of 160 mJy. This is one of the most luminous stellar radio flares ever observed. Remarkably, the Chandra X-ray observatory was in the midst of a deep integration of the Orion nebula at the time of the BIMA discovery; the source's X-ray flux increased by a factor of 10 approximately 2 days before the radio detection. Follow-up radio observations with the VLA and BIMA showed that the source decayed on a timescale of days, then flared again several times over the next 70 days, although never as brightly as during the discovery. Circular polarization was detected at 15, 22, and 43 GHz, indicating that the emission mechanism was cyclotron. VLBA observations 9 days after the initial flare yield a brightness temperature Tb > 5 x 10^7 K at 15 GHz. Infrared spectroscopy indicates the source is a K5V star with faint Br gamma emission, suggesting that it is a weak-line T Tauri object. Zeeman splitting measurements in the infrared spectrum find B ~ 2.6 +/- 1.0 kG. The flare is an extreme example of magnetic activity associated with a young stellar object. These data suggest that short observations obtained with ALMA will uncover hundreds of flaring young stellar objects in the Orion region.Comment: 29 pages, 7 figures, accepted for publication in Ap

    A Bima Array Survey of Molecules in Comets Linear (C/2002 T7) and Neat (C/2001 Q4)

    Get PDF
    We present an interferometric search for large molecules, including methanol, methyl cyanide, ethyl cyanide, ethanol, and methyl formate in comets LINEAR (C/2002 T7) and NEAT (C/2001 Q4) with the Berkeley-Illinois-Maryland Association (BIMA) array. In addition, we also searched for transitions of the simpler molecules CS, SiO, HNC, HN13C and 13CO . We detected transitions of methanol and CS around Comet LINEAR and one transition of methanol around Comet NEAT within a synthesized beam of ~20''. We calculated the total column density and production rate of each molecular species using the variable temperature and outflow velocity (VTOV) model described by Friedel et al.(2005).Considering the molecular production rate ratios with respect to water, Comet T7 LINEAR is more similar to Comet Hale-Bopp while Comet Q4 NEAT is more similar to Comet Hyakutake. It is unclear, however, due to such a small sample size, whether there is a clear distinction between a Hale-Bopp and Hyakutake class of comet or whether comets have a continuous range of molecular production rate ratios.Comment: Accepted for Publication in the Astrophysical Journa

    The impact of a large object with Jupiter in July 2009

    Full text link
    On 2009 July 19, we observed a single, large impact on Jupiter at a planetocentric latitude of 55^{\circ}S. This and the Shoemaker-Levy 9 (SL9) impacts on Jupiter in 1994 are the only planetary-scale impacts ever observed. The 2009 impact had an entry trajectory opposite and with a lower incidence angle than that of SL9. Comparison of the initial aerosol cloud debris properties, spanning 4,800 km east-west and 2,500 km north-south, with those produced by the SL9 fragments, and dynamical calculations of pre-impact orbit, indicate that the impactor was most probably an icy body with a size of 0.5-1 km. The collision rate of events of this magnitude may be five to ten times more frequent than previously thought. The search for unpredicted impacts, such as the current one, could be best performed in 890-nm and K (2.03-2.36 {\mu}m) filters in strong gaseous absorption, where the high-altitude aerosols are more reflective than Jupiter's primary cloud.Comment: 15 pages, 5 figure
    • …
    corecore