22,854 research outputs found

    Renormalization group analysis of the Reynolds stress transport equation

    Get PDF
    The pressure velocity correlation and return to isotropy term in the Reynolds stress transport equation are analyzed using the Yakhot-Orszag renormalization group. The perturbation series for the relevant correlations, evaluated to lowest order in the epsilon-expansion of the Yakhot-Orszag theory, are infinite series in tensor product powers of the mean velocity gradient and its transpose. Formal lowest order Pade approximations to the sums of these series produce a fast pressure strain model of the form proposed by Launder, Reece, and Rodi, and a return to isotropy model of the form proposed by Rotta. In both cases, the model constant are computed theoretically. The predicted Reynolds stress ratios in simple shear flows are evaluated and compared with experimental data. The possibility is discussed of driving higher order nonlinear models by approximating the sums more accurately

    Coalescent simulation in continuous space:Algorithms for large neighbourhood size

    Get PDF
    Many species have an essentially continuous distribution in space, in which there are no natural divisions between randomly mating subpopulations. Yet, the standard approach to modelling these populations is to impose an arbitrary grid of demes, adjusting deme sizes and migration rates in an attempt to capture the important features of the population. Such indirect methods are required because of the failure of the classical models of isolation by distance, which have been shown to have major technical flaws. A recently introduced model of extinction and recolonisation in two dimensions solves these technical problems, and provides a rigorous technical foundation for the study of populations evolving in a spatial continuum. The coalescent process for this model is simply stated, but direct simulation is very inefficient for large neighbourhood sizes. We present efficient and exact algorithms to simulate this coalescent process for arbitrary sample sizes and numbers of loci, and analyse these algorithms in detail

    A benign, low Z electron capture agent for negative ion TPCs

    Get PDF
    We have identified nitromethane (CH3_3NO2_2) as an effective electron capture agent for negative ion TPCs (NITPCs). We present drift velocity and longitudinal diffusion measurements for negative ion gas mixtures using nitromethane as the capture agent. Not only is nitromethane substantially more benign than the only other identified capture agent, CS2_2, but its low atomic number will enable the use of the NITPC as a photoelectric X{}-ray polarimeter in the 1{}-10 keV band

    Casimir-Polder forces, boundary conditions and fluctuations

    Full text link
    We review different aspects of the atom-atom and atom-wall Casimir-Polder forces. We first discuss the role of a boundary condition on the interatomic Casimir-Polder potential between two ground-state atoms, and give a physically transparent interpretation of the results in terms of vacuum fluctuations and image atomic dipoles. We then discuss the known atom-wall Casimir-Polder force for ground- and excited-state atoms, using a different method which is also suited for extension to time-dependent situations. Finally, we consider the fluctuation of the Casimir-Polder force between a ground-state atom and a conducting wall, and discuss possible observation of this force fluctuation.Comment: 5 page

    Nucleon-Nucleon Interactions from Dispersion Relations: Coupled Partial Waves

    Full text link
    We consider nucleon-nucleon interactions from chiral effective field theory applying the N/D method. The case of coupled partial waves is now treated, extending Ref. [1] where the uncoupled case was studied. As a result three N/D elastic-like equations have to be solved for every set of three independent partial waves coupled. As in the previous reference the input for this method is the discontinuity along the left-hand cut of the nucleon-nucleon partial wave amplitudes. It can be calculated perturbatively in chiral perturbation theory because it involves only irreducible two-nucleon intermediate states. We apply here our method to the leading order result consisting of one-pion exchange as the source for the discontinuity along the left-hand cut. The linear integral equations for the N/D method must be solved in the presence of L - 1 constraints, with L the orbital angular momentum, in order to satisfy the proper threshold behavior for L>= 2. We dedicate special attention to satisfy the requirements of unitarity in coupled channels. We also focus on the specific issue of the deuteron pole position in the 3S1-3D1 scattering. Our final amplitudes are based on dispersion relations and chiral effective field theory, being independent of any explicit regulator. They are amenable to a systematic improvement order by order in the chiral expansion.Comment: 11 pages. Extends the work of uncoupled partial waves of M. Albaladejo and J. A. Oller, Phys. Rev. C 84, 054009 (2011) to the case of coupled partial waves. This version matches the published version. Discussion about the deuteron enlarged. Some references adde

    Environments of Redshift Survey Compact Groups of Galaxies

    Get PDF
    Redshift Survey Compact Groups (RSCGs) are tight knots of N >= 3 galaxies selected from the CfA2+SSRS2 redshift survey. The selection is based on physical extent and association in redshift space alone. We measured 300 new redshifts of fainter galaxies within 1 h^{-1} Mpc of 14 RSCGs to explore the relationship between RSCGs and their environments. 13 of 14 RSCGs are embedded in overdense regions of redshift space. The systems range from a loose group of 5 members to an Abell cluster. The remaining group, RSCG 64, appears isolated. RSCGs are isolated and distinct from their surroundings to varying degrees, as are the Hickson Compact Groups. Among the 13 embedded RSCGs, 3 are distinct from their general environments (RSCG 9, RSCG 11 and RSCG 85).Comment: 35 pages, including 10 figures and 5 tables, accepted for publication in the Astronomical Journa

    Multipole expansion of Bessel and Gaussian beams for Mie scattering calculations

    Get PDF
    Multipole expansions of Bessel and Gaussian beams, suitable for use in Mie scattering calculations, are derived. These results allow Mie scattering calculations to be carried out considerably faster than existing methods, something that is of particular interest for time evolution simulations where large numbers of scattering calculations must be performed. An analytic result is derived for the Bessel beam that improves on a previously published expression requiring the evaluation of an integral. An analogous expression containing a single integral, similar to existing results quoted, but not derived, in literature, is derived for a Gaussian beam,valid from the paraxial limit all the way to arbitrarily high numerical apertures

    Categories of insight and their correlates: An exploration of relationships among classic-type insight problems, rebus puzzles, remote associates and esoteric analogies.

    Get PDF
    A central question in creativity concerns how insightful ideas emerge. Anecdotal examples of insightful scientific and technical discoveries include Goodyear's discovery of the vulcanization of rubber, and Mendeleev's realization that there may be gaps as he tried to arrange the elements into the Periodic Table. Although most people would regard these discoveries as insightful, cognitive psychologists have had difficulty in agreeing on whether such ideas resulted from insights or from conventional problem solving processes. One area of wide agreement among psychologists is that insight involves a process of restructuring. If this view is correct, then understanding insight and its role in problem solving will depend on a better understanding of restructuring and the characteristics that describe it. This article proposes and tests a preliminary classification of insight problems based on several restructuring characteristics: the need to redefine spatial assumptions, the need to change defined forms, the degree of misdirection involved, the difficulty in visualizing a possible solution, the number of restructuring sequences in the problem, and the requirement for figure-ground type reversals. A second purpose of the study was to compare performance on classic spatial insight problems with two types of verbal tests that may be related to insight, the Remote Associates Test (RAT), and rebus puzzles. In doing so, we report on the results of a survey of 172 business students at the University of Waikato in New Zealand who completed classic-type insight, RAT and rebus problems

    Relic Abundances and the Boltzmann Equation

    Get PDF
    I discuss the validity of the quantum Boltzmann equation for the calculation of WIMP relic densities.Comment: 5 pages, no figures; talk given at Dark Matter 2000; an important reference is added in the revised versio

    Search for correlation effects in linear chains of trapped ions

    Get PDF
    We report a precise search for correlation effects in linear chains of 2 and 3 trapped Ca+ ions. Unexplained correlations in photon emission times within a linear chain of trapped ions have been reported, which, if genuine, cast doubt on the potential of an ion trap to realize quantum information processing. We observe quantum jumps from the metastable 3d 2D_{5/2} level for several hours, searching for correlations between the decay times of the different ions. We find no evidence for correlations: the number of quantum jumps with separations of less than 10 ms is consistent with statistics to within errors of 0.05%; the lifetime of the metastable level derived from the data is consistent with that derived from independent single-ion data at the level of the experimental errors 1%; and no rank correlations between the decay times were found with sensitivity to rank correlation coefficients at the level of |R| = 0.024.Comment: With changes to introduction. 5 pages, including 4 figures. Submitted to Europhys. Let
    • 

    corecore