

Edinburgh Research Explorer

Coalescent simulation in continuous space

Citation for published version:
Kelleher, J, Etheridge, AM & Barton, NH 2014, 'Coalescent simulation in continuous space: Algorithms for
large neighbourhood size' Theoretical population biology., 10.1016/j.tpb.2014.05.001

Digital Object Identifier (DOI):
10.1016/j.tpb.2014.05.001

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher final version (usually the publisher pdf)

Published In:
Theoretical population biology

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/28977787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.tpb.2014.05.001
http://www.research.ed.ac.uk/portal/en/publications/coalescent-simulation-in-continuous-space(b02c8178-0287-454b-8177-174abdb64b5d).html

Theoretical Population Biology xx (xxxx) xxx–xxx

Contents lists available at ScienceDirect

Theoretical Population Biology

journal homepage: www.elsevier.com/locate/tpb

Coalescent simulation in continuous space: Algorithms for large
neighbourhood size

Q1 J. Kelleher a,∗, A.M. Etheridge b, N.H. Barton c

a Institute of Evolutionary Biology, University of Edinburgh, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
b Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK
c Institute of Science and Technology, Am Campus I, A-3400 Klosterneuburg, Austria

a r t i c l e i n f o

Article history:
Received 28 October 2013
Available online xxxx

Keywords:
Isolation by distance
Coalescent simulation

a b s t r a c t

Many species have an essentially continuous distribution in space, in which there are no natural divisions
between randomly mating subpopulations. Yet, the standard approach to modelling these populations is
to impose an arbitrary grid of demes, adjusting deme sizes and migration rates in an attempt to capture
the important features of the population. Such indirect methods are required because of the failure of the
classicalmodels of isolation by distance, which have been shown to havemajor technical flaws. A recently
introducedmodel of extinction and recolonisation in twodimensions solves these technical problems, and
provides a rigorous technical foundation for the study of populations evolving in a spatial continuum.
The coalescent process for this model is simply stated, but direct simulation is very inefficient for large
neighbourhood sizes. We present efficient and exact algorithms to simulate this coalescent process for
arbitrary sample sizes and numbers of loci, and analyse these algorithms in detail.

© 2014 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction1

As Wright noted (1978, p. 54), many species, such as the dom-2

inant plants in grasslands, have an essentially continuous and3

uniform distribution in space. In these populations there are no4

divisions between discrete units, within which mating occurs ran-5

domly and between which migrants are exchanged. Despite this6

obvious observation, the majority of methods available to simu-7

late the history of such populations require this arbitrary struc-8

ture to be imposed. The typical approach is to use a stepping stone9

model inwhich a usermust specify a deme size andmigration rates10

between these demes. This approach models many evolutionary11

scenarios very well, but it can hardly be described as a natural rep-12

resentation of a continuously distributed population.Q213

This arbitrary grid of demes is required because of the lack14

of a well-defined model to capture the dynamics of continuously15

distributed populations. The classical model of isolation by dis-16

tance (Wright, 1943; Malécot, 1948) suffers from severe tech-17

nical problems, most notably a lack of local density regulation18

leading to clumps of arbitrarily high density (Felsenstein, 1975).19

∗ Corresponding author.
E-mail addresses: jerome.kelleher@ed.ac.uk (J. Kelleher),

etheridg@stats.ox.ac.uk (A.M. Etheridge), n.barton@ist.ac.at (N.H. Barton).

The Wright–Malécot model is also inconsistent with some im- 20

portant biological observations such as large-scale patterns, cor- 21

relations across loci, and lower diversity than expected from 22

census numbers (Barton et al., 2010b). Etheridge (2008) introduced 23

a model that can describe extinction and recolonisation over a 24

range of scales and provides a simple and effective means of mod- 25

elling the evolution of a continuously distributed population. In 26

this model, each individual occupies a fixed location in space dur- 27

ing their lifetime, and all movement and reproduction happens as 28

a consequence of extinction/recolonisation events. Events span 29

a range of scales, from the steady process of local reproduction 30

within neighbourhoods to large-scale demographic shifts affect- 31

ing a substantial fraction of the population. The model solves the 32

long-standing technical problemsmentioned above, and opens the 33

way for mathematically rigorous analytical and inferencemethods 34

based on a true continuum. 35

This model of extinction and recolonisation can be viewed as 36

a framework for describing population models, in which different 37

realisations of the framework share a few essential characteristics 38

but have a great deal of freedom in the details of how the 39

replacement mechanisms work. We focus on one instance of the 40

model here, known as the disc model (generalisations of the 41

methods are discussed in Section 5). Suppose that we have a 42

population of individuals distributed uniformly at random on a 43

square torus of diameter L with some density ρ. The evolution of 44

http://dx.doi.org/10.1016/j.tpb.2014.05.001
0040-5809/© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

http://dx.doi.org/10.1016/j.tpb.2014.05.001
http://www.elsevier.com/locate/tpb
http://www.elsevier.com/locate/tpb
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
mailto:jerome.kelleher@ed.ac.uk
mailto:etheridg@stats.ox.ac.uk
mailto:n.barton@ist.ac.at
http://dx.doi.org/10.1016/j.tpb.2014.05.001
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

2 J. Kelleher et al. / Theoretical Population Biology xx (xxxx) xxx–xxx

the population is driven by extinction/recolonisation events that1

occur at rate λ. At an event, we choose a point z uniformly at2

random on the torus, and this event only affects the individuals3

within distance r of z. Within this disc centred on z, a small4

number of parents ν are chosen uniformly, and each individual5

has a probability u of dying. (The parameters r and u are often6

referred to as the radius and impact of an event, respectively.) A7

Poisson number of children with mean ρuπr2 are then thrown8

down uniformly within the disc, and the children choose parents9

uniformly from the pool chosen earlier, completing the event.10

Moving to the limit of high density, we then obtain the spatial11

Λ-Fleming–Viot process, for which many analytical results have12

been derived (Barton et al., 2013b), and the coalescent process13

is simple to describe. We begin with a sample of n lineages14

and proceed backwards in time event-by-event until one of15

these events overlaps at least one lineage. Then, this lineage has16

probability u of having been born in this event (since we are17

proceeding backwards in time); if it was, it jumps to the location of18

a parental lineage whose location is chosen uniformly at random19

from the same disc. Eventually, two lineages will be overlapped20

by the same event and with probability u2/ν a coalescence event21

occurs and both lineages jump to the location of their parent. We22

may also have many lineages descending from a single parent23

in a event. This process can be formalised as an algorithm very24

simply (Kelleher et al., 2013); unfortunately, however, such a direct25

implementation is very inefficient if we wish to simulate the26

history of populations with large neighbourhood size.27

Wright’s neighbourhood size N (1943; 1946) is widely re-28

garded as the most important parameter describing populations29

evolving in a two-dimensional continuum, and determines the rel-30

ative rates of genetic drift and gene flow. Wright (1943) identi-31

fied the approximate magnitudes of the neighbourhood sizes we32

might expect to observe in natural populations. Small values, with33

N < 100, correspond to populations with short range dispersal34

and a high degree of differentiation. Large neighbourhood sizes,35

with N > 104, correspond to populations that are ‘‘substantially36

equivalent to panmixia throughout a range of any conceivable37

size’’. Empirical estimates of N have supported Wright’s analysis,38

withmobile species such as Drosophila having neighbourhood size39

greater than 103 and estimates for plant species being as little as 1040

or less (Crawford, 1984). These estimates are also consistent with41

the range of observed FST values (Morjan and Rieseberg, 2004).42

In the disc model, neighbourhood size is given very simply as43

N = ν/u (Barton et al., 2013a), where ν is the number of potential44

parents and u is the probability an individual dies in an event.45

Thus, assuming a single parent and a modest neighbourhood size46

of 100, we arrive at an impact of u = 1/100. Unfortunately, these47

parameters present serious difficulties to a direct simulation of the48

coalescent process, in whichwe expect to generate 1/u events that49

intersect with a lineage before it jumps. For large neighbourhood50

size, this represents a heavy computational burden.51

In this article we develop algorithms to simulate the coalescent52

process efficiently for large neighbourhood and range sizes. In Sec-53

tion 2we begin by defining an algorithm to simulate the important54

special case of the ancestry of a sample of size two. In this case it is55

simple to calculate the exact distribution of the time that elapses56

between events in which a lineage jumps, allowing us to simulate57

only these events. We then generalise these ideas in Section 3 to58

allow us to simulate the history of a sample of n lineages. Because59

of the inherent geometric difficulty of the problem we cannot di-60

rectly generalise the pairwise algorithm. By tessellating the torus61

into square pixels of edge s we can approximate the areas we re-62

quire very quickly and then apply a correction to precisely can-63

cel the errors entailed using rejection sampling. We then model64

the behaviour of the algorithm and derive an optimal value for the65

pixel size s to minimise the computational effort required for a lin-66

eage jump. Section 4 continues by generalising this algorithm so67

that we can simulate the history of a sample of individuals with a 68

large number of loci. We describe a general algorithm to distribute 69

genetic material among ancestors over an arbitrary number of loci, 70

and show that this method is efficient when recombination is fast. 71

In particular, we show that the approach is much more efficient 72

that the method used by the classical ms program (Hudson, 2002). 73

A Python interface to an efficient implementation of this multilo- 74

cus algorithm is available at https://pypi.python.org/pypi/discsim 75

under the terms of the GNU General Public License. 76

In this article we study algorithms in much more detail than 77

is customary in the population genetics literature. We provide 78

detailed and unambiguous algorithm listings in a well established 79

format (Knuth, 1997a, Section 1.1), which is important for several 80

reasons. Firstly, it is impossible to establish the correctness of 81

an algorithm that is stated in an ambiguous natural language 82

format. Given the centrality of coalescent algorithms in modern 83

population genetics and the difficulty of detecting errors in 84

computer programs with stochastic results, it is imperative that 85

we are certain the underlying algorithm is correct. Secondly, since 86

stochastic programs are prone to subtle errors, it is important that 87

a diversity of implementations of a given algorithm exist. If we 88

are dependent on a single (possibly opaque) implementation of 89

a given algorithm, then it is very difficult to verify the results of 90

this program. With a detailed algorithm listing, implementation 91

is routine and allows for multiple independent implementations. 92

Finally, a rigorous description of an algorithm allows us to 93

analyse the properties of this algorithm using mathematical 94

techniques, allowing us to improve performancewithout resorting 95

to approximations. 96

2. Pairwise coalescent 97

Simulating the ancestry of a sample of size two is an important 98

special case, as we are often interested in pairwise statistics. 99

In the extinction/recolonisation continuum model this involves 100

tracing the history of two lineages as they move around the range 101

beforemeeting and, eventually, coalescing. Events fall uniformly at 102

random across the range, but it is only events that fall within a disc 103

of radius r around the location of at least one of the two lineages 104

that can result in a lineage jumping to a new location. Similarly, 105

the lineages can only coalesce in a given event if the centre of the 106

event falls in the intersection of the discs around these lineages: 107

the centremust bewithin distance r of both lineages or they cannot 108

both be born in the event. 109

Remark 1. A lineage is defined by a point x on the torus, as this is 110

the location of the ancestral individual in question. To simplify the 111

following discussions, however, we refer to a lineage as the disc 112

of radius r around this point. For example, when we refer to the 113

intersection of two lineages this is a shorthand for the intersection 114

of the discs of radius r centred on the locations of the lineages. 115

The idea behind the pairwise coalescent algorithm is straight- 116

forward—we only simulate events that result in a lineage jumping, 117

and calculate the distribution of the time that elapses between 118

these events. Since events fall in a Poisson process with rate 119

λ, we can ‘thin’ this process to generate only the events that 120

result in jumps. Specifically, if events of a particular type occur 121

with probability p, we know that these events constitute an 122

independent process with rate pλ. In the pairwise algorithm we 123

must thin the Poisson process twice: once to remove the events 124

whose centres fall outside of the union of the two lineages, and 125

again to remove the events that fall within this area but do not 126

result in a lineage jumping. 127

To calculate the rate at which at least one lineage jumps, we 128

must calculate the area covered by exactly one lineage, α1, and 129

the area covered by exactly two lineages, α2. These are given 130

https://pypi.python.org/pypi/discsim

J. Kelleher et al. / Theoretical Population Biology xx (xxxx) xxx–xxx 3

by the symmetric difference and the union of the two lineages,1

respectively. (The symmetric difference of two sets A and B is2

(A ∪ B) \ (A ∩ B).) Let Ar(x) denote the area of the intersection3

of two discs of radius r with centres distance x apart, i.e.,4

Ar(x) = 2r2 arccos
 x
2r

−

x
2

4r2 − x2 (1)5

for x < 2r and Ar(x) = 0 otherwise. We also define6

ūk = 1− (1− u)k (2)7

in the interest of brevity.8

Lemma 1. Given two lineages separated by distance x, the rate at9

which at least one lineage jumps is10

Ω2 =
λ

L2
(α1u+ α2ū2)11

where α2 = Ar(x) and α1 = 2πr2 − 2α2.12

Proof. Events fall uniformly at rate λ and hit the area covered by13

exactly one lineage at rate λα1/L2. A single lineage subsequently14

jumps with probability u, and so the rate at which jump events15

fall in the symmetric difference of the two lineages is λuα1/L2.16

Similarly, events fall in the intersection of the two lineages at rate17

λα2/L2. Then, since there are two lineages that may jump in this18

region, the probability that at least one jumps is ū2. �19

Lemma 2. Conditional on at least one lineage jumping, the probabil-20

ity that the centre of the event is in the intersection of the two lineages21

is 1− α1/(α1 − α2(u− 2)).22

Proof. The rate at which jump events fall in the intersection of the23

lineages is ω2 = λα2ū2/L2; therefore, the probability that a given24

jump event is of this class is ω2/Ω2. �25

Lemma 3. Conditional on the centre of a jump event falling in the26

intersection of the two lineages, the probability that both lineages27

jump and coalesce is u/(2− u).28

Proof. The probability that both lineages are hit is u2, and the29

probability of at least one lineage being hit is ū2. Therefore, the30

probability of both being hit conditional on at least one being hit is31

u2/ū2 = u/(2− u). �32

To describe the algorithm concisely, we require some notation.33

LetDr(z) define a disc of radius r centred at z on a two-dimensional34

torus of diameter L, and let ∥x∥ be the Euclidean norm of the vector35

x on such a torus (we suppress the dependence on L for simplicity).36

We also require notation to describe sampling values from random37

variables drawn from a variety of distributions. Let R∆(ξ1, . . . , ξk)38

define a single independent sample from a random variable39

with distribution ∆ and parameters ξ1, . . . , ξk. (Note that each40

instance of R∆(ξ1, . . . , ξk) within an algorithm listing represents41

an independent random sample from the specified distribution.)42

Using this notation, we define RU(A) to be an element of the set43

A chosen uniformly at random, and RE(λ) as a sample from an44

exponentially distributed random variable with rate λ.45

Algorithm P (Pairwise Coalescent). Simulate the coalescence time46

t of two lineages sampled at distance x under a model in which47

events with radius r and impact u occur at rate λ on a two-48

dimensional torus of diameter L.49

P1. [Initialisation.] Set y1 ← (0, 0), y2 ← (0, x) and then set50

t ← 0.51

P2. [Event.] Set α2 ← Ar(∥y1 − y2∥) and α1 ← 2πr2 − 2α2.52

Then, set Ω ← λ(α1u + α2ū2)/L2 and t ← t + RE(Ω). If53

RU([0, 1)) < 1/2, set j ← 1; otherwise set j ← 2. Finally, if54

RU([0, 1)) < 1− α1/(α1 − α2(u− 2)), go to P4.55

P3. [Symmetric difference.] Set k ← (j mod 2) + 1. Then set 56

z← RU(Dr(yj) \ Dr(yk)) and go to P5. 57

P4. [Intersection.] Set z← RU(Dr(y1)∩Dr(y2)). Then ifRU([0, 1)) 58

< u/(2− u), terminate the algorithm. 59

P5. [Jump.] Set yj ← RU(Dr(z)) and go to P2. � 60

The algorithm sets up two lineages on the torus separated by 61

distance x and simulates their history jump-by-jump until the 62

lineages coalesce, returning their coalescence time t . In step P2 63

we first determine the distance between the two lineages and 64

compute α1 and α2. We then calculate the rate at which jumps 65

occur using Lemma 1 and increment t accordingly. 66

After this, we choose a lineage j to jump, and decide if the centre 67

of the event z is in the symmetric difference of the two lineages or 68

their intersection according to Lemma 2. If the centre falls in the 69

symmetric difference of the two lineages, we generate z uniformly 70

in Dr(yj) \ Dr(yk) in P3 and then proceed immediately to step P5. 71

If, on the other hand, z falls in the intersection of the two 72

lineages we proceed to step P4, where we throw z down uniformly 73

within this area. Then, according to Lemma 3, both lineages jump 74

with probability u/(2 − u) and so a coalescence occurs and we 75

terminate the algorithm. Otherwise, lineage j jumps to a new 76

location in the disc centred on z, and we return to P2. 77

Given Lemmas 1–3 it is straightforward to show that Algo- 78

rithm P simulates the coalescent process correctly. In Fig. 2 we 79

compare the results of calculating the probability of identity in 80

state using Algorithm P with numerical estimates (outlined in the 81

Appendix). Under the infinitely many alleles model, the probabil- 82

ity of identity in state for two genes, F , is the probability that no 83

mutations have occurred since the lineages diverged.We therefore 84

have F = exp(−2µt) for mutation rate µ and coalescence time t . 85

By takingmany replicates we can estimate F from simulations, and 86

we see an excellent agreement between the results of Algorithm P 87

and numerical methods in Fig. 2. 88

The algorithm is clearly very efficient, since each lineage jump 89

requires a constant number of algorithm steps, and each of these 90

steps is straightforward. Indeed, other than generating points 91

uniformly within the symmetric difference and intersection of the 92

lineages, which can be achieved via standard methods (Knuth, 93

1997b, Section 3.4), the time required for each jump is constant. 94

It is not difficult to generalise Algorithm P to simulate several 95

classes of event occurring at different rates. Suppose we have k 96

classes of event, occurring at rate λj with radius rj and impact uj. To 97

do this, wemustmodify step P2. In this new step, we first calculate 98

the rate at which successful events are happening for all of these 99

classes by setting ωj ← λj(αj,1uj + αj,2ūj,2)/L2 for 1 ≤ j ≤ n, 100

where αj,2 = Arj(∥y1 − y2∥) and αj,1 = 2πr2j − 2αj,2, as before. 101

Having calculated the rates at which each of these classes of event 102

are occurring,we increment timeby settingΩ ← ω1+· · ·+ωk and 103

t ← t +RE(Ω). We then choose an event class j with probability 104

ωj/Ω , and set r ← rj and u← uj. After this, we can proceed with 105

P2 as before, choosing the location of the event in either the union 106

or symmetric difference of the lineages. The remaining steps of the 107

algorithm are unchanged. 108

3. Single locus coalescent 109

Algorithm P provides a satisfactory method to simulate the 110

history of two genes. The basic idea of the algorithm is to partition 111

the torus into regions in which zero, one or two lineages intersect, 112

which can be done quite simply. Although we can generalise the 113

Lemmas 1–3 to n lineages easily, it is not so simple to actually 114

calculate the areas involved. Specifically, calculating the area in 115

which k out of a given n discs intersect is not a trivial problem. 116

We approach the problem instead by calculating these areas 117

approximately using a tessellation of the torus into square pixels 118

4 J. Kelleher et al. / Theoretical Population Biology xx (xxxx) xxx–xxx

and then correct for the errors introduced precisely using rejection1

sampling.2

The output of the algorithm is the simulated history of the3

sample (π, τ), whereπ is an oriented tree and τ the corresponding4

node times. An oriented tree (Knuth, 2011, p. 461) is a sequence5

π1π2 . . . , such thatπj is the parent of node j and j is a root ifπj = 0.6

For example, the oriented trees7

8

correspond to the sequences 44550, 4440 and 54450, respectively.9

Oriented trees provide an elegantmeans of describing genealogies,10

since only parent–child relationships are encoded and the order11

of children at a node is not important. Oriented trees also have12

several advantages over more traditional approaches such as13

nested parentheses. The principal advantage for our purposes here14

is that we can describe coalescent algorithms in terms of oriented15

trees concisely and without ambiguity.16

3.1. Algorithm N17

The pairwise coalescent, Algorithm P, is almost entirely defined18

by Lemmas 1–3. Although we cannot generalise the algorithm in19

a direct way because of geometric difficulty, we still require the20

corresponding results for a sample of n lineages. The following21

results generalise the pairwise results, and form the basis of the22

subsequent algorithm.23

Lemma 4. Given a sample of n lineages, the rate at which at least one24

lineage jumps is25

Ωn =
λ

L2

n
k=1

αkūk26

where αk is the area covered by the intersection of exactly k lineages.27

Proof. The centre of an event z causing a lineage to jump must28

fall in the intersection of one or more lineages, and an event falls29

in the intersection of k lineages with probability αk/L2. If z falls30

in the intersection of k lineages, then at least one lineage jumps31

with probability ūk. Summing over all the possible intersections32

of lineages, we obtain an overall jump rate of λ
n

k=1 αkūk/L2 as33

required. �34

Lemma 5. Conditional on at least one lineage jumping, the probabil-35

ity that the centre of the event is in the intersection of exactly k lineages36

is αkūk/
n

j=1 αjūj.37

Proof. The rate at which the centre of jump events fall in the38

intersection of k lineages is ωk = λαkūk/L2; therefore, the39

probability that a given jump event is of this class is ωk/Ωn. �40

Lemma 6. Given that z falls in the intersection of k lineages and that41

at least one of them jumps, the probability that exactly j jump is42

β(k, j) =

k
j

uj(1− u)k−j

ūk
.43

Proof. Exactly j lineages jump with probability uj(1 − u)k−j,44

and there are

k
j

ways this can happen. Then, since we have45

conditioned on at least one lineage jumping, we divide by 1− (1−46

u)k, to give us β(k, j) as required. �47

Calculating the area in which k lineages intersect is nontrivial, 48

but we can use Lemmas 4–6 to derive an efficient simulation 49

algorithm. In this algorithm we proceed by dividing our torus 50

into pixels of edge s, and then use this tessellation to quickly 51

calculate an over-estimate of the area inwhich k lineages intersect. 52

The errors introduced by this over-estimate can then be precisely 53

cancelled out by discarding potential jump events with a certain 54

probability using rejection sampling. 55

The key idea of Algorithm N is to divide the range into pixels 56

of edge s; we assume that L/s is an integer so that pixels do not 57

overlap. Let a pixel v ∈ {1, . . . , L/s}2 define an s× s square on the 58

torus such that a point x is in the pixel v if 0 ≤ sv1 − x1 < s and 59

0 ≤ sv2 − x2 < s (i.e., the top-right corner of pixel v is sv in torus 60

coordinates). LetDs
r(z) be the set of pixels that intersectwithDr(z), 61

i.e.: 62

Ds
r(z) = {(⌈x1/s⌉, ⌈x2/s⌉) | x ∈ Dr(z)}. 63

We also require some further notation to describe sampling from 64

random variables. Firstly, we extend the notation RU(A) for 65

sampling an element of a set A uniformly, by letting RU(A, k) be 66

a k-subset of A chosen uniformly at random (that is, RU(A, k) is a 67

randomsample of k elements chosen fromAwithout replacement). 68

Secondly, we let RD(p) be a random sample from a discrete 69

distribution with probability mass function defined by the vector 70

p, such that if we set j ← RD(p), then j = k with probability pk. 71

Also, let ∅ be the null point. 72

Algorithm N (Single Locus Coalescent). Simulate the ancestry 73

(π, τ) of individuals sampled at locations x1, . . . , xn under amodel 74

in which events with radius r and impact u occur at rate λ on a 75

two-dimensional torus of diameter L using pixel size s, such that 76

L/s ∈ N. 77

N1. [Initialisation.] Set πj ← 0, τj ← 0 and yj ← ∅ for 1 ≤ j < 2n 78

and then set κ ← n, η ← n + 1, t ← 0 and h∗ ← 0. Set 79

Pv ← ∅ for v ∈ {1, . . . , L/s}2 and set Qk ← ∅ for 1 ≤ k ≤ n. 80

Then, for 1 ≤ j ≤ n set yj ← xj and for each v ∈ Ds
r(xj), set 81

Pv ← Pv ∪ {j}, h← |Pv| , Qh ← Qh ∪ {v}, h∗ ← max(h∗, h), 82

and, if h > 1, set Qh−1 ← Qh−1 \ {v}. 83

N2. [Rate.]While |Qh∗ | = 0, set h∗ ← h∗−1. Then, setw← 0 and 84

for 1 ≤ j ≤ h∗, set pj ←
Qj
 ūj and w← w + pj. Afterwards, 85

set pj ← pj/w for 1 ≤ j ≤ h∗. 86

N3. [Location.] Set t ← t + RE(wλs2/L2), h ← RD(p), v ← 87

RU(Qh) and z ← s(v − RU([0, 1)2)). Then set S ← ∅ and, 88

for each j ∈ Pv, if z ∈ Dr(yj) set S ← S ∪ {j}. Finally, if 89

RU([0, 1)) < 1− ū|S|/ūh, return to N3. 90

N4. [Choose children.] Set bj ← β(|S| , j) for 1 ≤ j ≤ |S|, then set 91

j ← RD(b) and C ← RU(S, j). Then, if |C | = 1, set k ← C1; 92

otherwise, set k← η. 93

N5. [Remove children.] For each j ∈ C , and for each v ∈ Ds
r(yj) set 94

h ← |Pv| , Pv ← Pv \ {j},Qh ← Qh \ {v} and, if h > 1, set 95

Qh−1 ← Qh−1 ∪ {v}. 96

N6. [Insert parent.] Set yk ← RU(Dr(z)) and then for each v ∈ 97

Ds
r(yk) set Pv ← Pv ∪ {k}, h← |Pv| , Qh ← Qh ∪ {v}, h∗ ← 98

max(h∗, h) and, if h > 1, set Qh−1 ← Qh−1 \ {v}. Finally, if Q3 99

|C | = 1 go back to N2. 100

N7. [Coalesce.] For each j ∈ C , set πj ← η. Then, set τη ← t , 101

η ← η + 1 and κ ← κ − |C | + 1. Finally, if κ > 1 go back 102

to N2. 103

As illustrated in Fig. 1, AlgorithmNmaintains a spatial index via 104

the matrix P . Each entry in P corresponds to a pixel, and is the set 105

of lineages that intersect with that pixel. The list Q is used to keep 106

track of the pixels with a given occupancy (defined as the number 107

of lineages that intersect with it), such that Qh is the set of pixels 108

with occupancy h. These data structures serve several purposes. 109

Firstly, Q allows us to quickly determine the number of pixels with 110

J. Kelleher et al. / Theoretical Population Biology xx (xxxx) xxx–xxx 5

Fig. 1. Illustration of the indexing structures used in Algorithm N. The torus is
divided into pixels of edge s. P is a square array of sets, where each set contains
the set of lineages that intersect with the pixel in question. Qj is the set of pixels
with occupancy j.

Fig. 2. Comparison of identity in state as calculated using simulations and
numerical methods for L = 100, s = 2, λ = 1, r = 1 and two neighbourhood
sizes corresponding to u = 1/8 and u = 1/80. The mutation rate to new alleles
µ = 10−6 . In Algorithm P, we take 106 replicates for every sampling distance
x, and in Algorithm N we take 106 replicates of a simulation in which we sample
individuals at 100 regularly spaced locations (of which a subset is shown).

a given occupancy when we calculate the rate at which events fall1

in N2, and then gain access to these pixels when we choose one2

uniformly. We then choose the centre of the event z uniformly3

within the pixel v, and we know that all lineages that can possibly4

be affected by this event are in the set Pv.5

Step N1 initialises the simulation, by first setting up the6

required data structures and then adding each location xj into the7

spatial indexes P and Q , updating the maximum occupancy h∗ as8

necessary. Once this initialisation is complete,we calculate the rate9

at which events fall based on the current state of the sample in N2,10

after first adjusting h∗ downwards, if necessary. Oncewe know the11

current rate at which jump events may occur, we then increment12

time according to this rate and choose an occupancy value h. We13

then select a pixel uniformly from those with occupancy h and14

choose a point zuniformlywithin this pixel. After thiswe find S, the15

set of lineages that z intersects with, and calculate the probability16

of jumping based on the size of this set. With probability ū|S|/ūh17

wemove on to step N4; otherwise, we return to the start of N3 and18

generate a newevent according to the same rates and probabilities.19

It is this process of rejection sampling that ensures we simulate20

precisely the correct process, even though the areas we calculate21

are approximate.22

In step N4, we know that at least one lineage of the set S23

was born in this event and so we choose the exact number born24

according to Lemma6. The variable k is used represent the parental 25

lineage. If exactly one child is born in the event, then there is no 26

coalescence, and the lineage simply jumps; thus, we set k to be the 27

child lineage (through a slight abuse of notation). Otherwise, when 28

more than one child is born in the event, a coalescence occurs, and 29

k is set to the new lineage η. 30

Step N5 then removes the child lineages from P and Q . 31

Afterwards, in stepN6we choose the location of the parent lineage, 32

and then update P andQ to reflect the insertion of this new lineage, 33

revising the maximum occupancy h∗ upwards, as required. 34

If C contains more than one lineage, we then proceed on to step 35

N7, where these lineages coalesce and we update the oriented tree 36

and node time structures to reflect this. We set πj ← η for each 37

j ∈ C to signify that the parent of lineage j is the new lineage η, 38

and also set τη ← t to record the fact that lineage η entered the 39

sample at time t . Finally, we calculate the number of remaining 40

lineages, and if this is greater than 1, return to step N2. 41

In the previous section we discussed the process by which the 42

pairwise coalescent can be extended to multiple event classes. 43

Unfortunately, it is not so simple to incorporate such events into 44

Algorithm N. To fully generalise the algorithm we must maintain 45

a spatial index for each class of event, and use this to calculate 46

the rates at which events of the various classes are currently 47

happening. While this is fairly straightforward to implement, the 48

memory requirements and the costs of updating the indexes soon 49

become a burden. In themost common case thatwewish tomodel, 50

however, there is a simpler and more efficient approach. If our 51

model consists of small frequent events interspersed with rare 52

large events (Barton et al., 2010a), then we can simply calculate 53

the probability of a large event occurring without conditioning on 54

at least one lineage jumping. Given that such large events are rare, 55

this approach is very efficient since the cost of the large events that 56

we simulate in which no lineages are affected is negligible when 57

amortised over a large number of reproduction events. 58

3.2. Correctness 59

Unlike Algorithm P, it is not immediately obvious that Algo- 60

rithm N correctly simulates the coalescent process given the rates 61

that lineages jump. The algorithm works by over-estimating the 62

area covered by the intersection of k lineages and then discard- 63

ing potential jumps with a certain probability, chosen to precisely 64

cancel the error in jump rate that this introduces. The following 65

lemmas prove that this process of rejection sampling results in the 66

correct jump and coalescence rates. 67

Lemma 7. Lineages jump at the correct rate in Algorithm N. 68

Proof. The rate at which lineages jump as the result of events 69

falling in the intersection of k lineages is λαkūk/L2. Therefore, 70

we must show that this rate holds for Algorithm N. Suppose we 71

choose a pixel v with occupancy h. Then, let αv
k be the area of this 72

pixel covered by the intersection of k lineages and let us calculate 73

the rate at which jumps occur as a result of events falling in the 74

intersection of k lineages. We begin by calculating the value of w 75

based on the current occupancy of the pixels in step N2. We then 76

move on to step N3 and increment time with rate wλs2/L2. We 77

then choose an occupancy value h with probability |Qh| ūh/w, and 78

a pixel vwith probability 1/ |Qh|. After throwing z down uniformly 79

within the pixel v there is a probability αv
k/s

2 that z falls in the 80

intersection of k lineages. Finally, with probability ūk/ūh we move 81

on to step N4 and at least one lineage jumps. Taking the product of 82

the rates of these events we obtain 83

w

λs2

L2

|Qh| ūh

w

1
|Qh|

αv
k

s2

ūk

ūh

. 84

6 J. Kelleher et al. / Theoretical Population Biology xx (xxxx) xxx–xxx

Cancelling terms, we see that the rate at which an event falls in1

the intersection of k lineages and a lineage jumps in a pixel of2

occupancy h is λαv
k ūk/L2. Since pixels are disjoint, we can find the3

total rate by summing over all pixels with occupancy h and over all4

occupancy values. This gives us5

λūk

L2

n
h=1

v∈Qh

αv
k = λαkūk/L26

as required. �7

Lemma7proves that the rejection sampling step of N4 correctly8

adjusts the rate at which lineages jump to account for the9

approximated areas, resulting in an exact algorithm to simulate10

the spatial coalescent. The remainder of the algorithm can be easily11

verified; for example,we can immediately see that stepN4 chooses12

a subset of the available lineages according to Lemma 6.13

Fig. 2 shows the probability of identity in state calculated via14

an implementation of Algorithm N and via numerical methods15

outlined in the Appendix. There is an excellent agreement between16

the results. Although identity in state is a pairwise measure,17

numerical methods still provide a good means of verifying the18

correctness of the implementation. We begin with a sample of19

regularly spaced locations x1, x2, . . . , xn, simulate the history of20

the sample, and then calculate the probability of identity between21

the pairs (x1, x2), (x1, x3), . . . , (x1, xn). These probabilities are22

then aggregated over many replicates to obtain an estimate of the23

mean probability of identity in state over these distances.24

3.3. Analysis25

The previous subsection assures us that Algorithm N simulates26

the coalescent process correctly for any pixel size s, but does not27

give us any indication of what the value of this parameter should28

be. It is clear that s has an important part to play in the amount29

of computational effort that is required to simulate the coalescent.30

If s is too large we will generate many events that miss all of the31

lineages, and so spend a great deal of time looping around step N3.32

On the other hand, if s is too small, we spend our time in steps N533

and N6 updating the indexing structures P and Q .34

One approach to choosing the value of s is to simply run35

AlgorithmN for a variety of s values andmake a choice based on the36

value which minimises the running time. While this is an effective37

method, it is unsatisfactory for several reasons. The most obvious38

problem is that there is no indication of the generality of the39

results obtained: the optimumvalue of smay depend on themodel40

parameters, and a great deal of computer time might be invested41

to explore the effects of L, u and r . A more subtle problem is that42

this approach can only find the optimum value of s for a given43

implementation of the algorithm. Ideally, each implementation44

should repeat this time consuming process to determine its own45

optimal pixel sizes for varying model parameters.46

A much more satisfactory method is to analyse the algorithm,47

using theoretical methods to estimate the optimum value of s48

and assess the effects of model parameters on this optimum.49

In principle, the analysis of an algorithm involves counting the50

number of primitive operations (such as assignments, arithmetic51

operations, etc.) incurred during its execution. Using this detailed52

model of the computational cost in terms of its input parameters,53

we can then derive the value of s that minimises this function. In54

practice, however, we are almost never interested in such detailed55

information, and an approximate broad-brush stroke model of the56

running time of the algorithm provides all the information that we57

need.58

In this section we apply this methodology to analyse Al-59

gorithm N. We derive a simple approximation to quantify the60

expected computational cost of the algorithm as a function of the61

Fig. 3. The catchment area of a pixel is s2 + 4rs + πr2 . For a disc of radius r to
intersect with the shaded pixel, its centre must fall within the illustrated region.

pixel size s, which provides us with a useful prediction for its op- 62

timum value. The analysis of the algorithm is slightly complicated 63

by the stochastic nature of the coalescent process. The most com- 64

mon means of analysing an algorithm is to derive an expression 65

to approximate its total running time as a function of the input 66

parameters. This would be very difficult in this case, as it would 67

first involve deriving the coalescence time of a sample of size n in 68

the extinction/recolonisation model. We are not interested in the 69

overall running time however, just minimising the cost of simu- 70

lating the process. Since the basic unit of work in the process is a 71

single lineage jump, we are therefore interested in the value of s 72

that minimises the average computational effort required to effect 73

one lineage jump. Coalescence can be ignored in this analysis, as 74

there are at most n − 1 coalescences, and the number of lineage 75

jumps is much, much larger than the sample size. 76

Throughout this analysis we assume amoderately sized sample 77

of n lineages on a large torus of diameter L ≫ r , and this torus is 78

tessellated into pixels of edge s ≪ L such that L/s is an integer. 79

We also assume a large neighbourhood size, so u ≪ 1. These 80

assumptions are reasonable, since they reflect the biological reality 81

that we wish to model. The following lemmas provide us with the 82

key quantities for our analysis. 83

Lemma 8. Let z be a point chosen uniformly at random on a torus of 84

diameter L tessellated into pixels of edge s. Let σr(s) be the expected 85

number of pixels that a disc of radius r centred at z intersects with. 86

Then, 87

σr(s) =
s2 + 4rs+ πr2

s2
. (3) 88

Proof. Let N = (L/s)2, and consider the disc of radius r centred 89

on z. The area in which z can fall such that it intersects with a 90

given pixel is s2 + 4rs + πr2, as shown in Fig. 3. Therefore, the 91

probability that the disc intersects with a given pixel is (s2+ 4rs+ 92

πr2)/(Ns2) since the total area of the torus is Ns2. Then, summing 93

this probability over all N pixels gives us the expected number of 94

pixels the disc intersects with, and the required result. � 95

Lemma 9. Let z be a point chosen uniformly at random on a torus 96

of diameter L tessellated into pixels of edge s, and let V be the set of 97

pixels that a disc of radius r centred at z intersects with. Then, let v 98

be a pixel chosen uniformly from V and x be a point chosen uniformly 99

from the pixel v. Let ψr(s) be the probability that x is within the disc 100

Dr(z). Then, 101

ψr(s) ≥
πr2

s2 + 4rs+ πr2
. (4) 102

J. Kelleher et al. / Theoretical Population Biology xx (xxxx) xxx–xxx 7

Proof. The expected number of covered pixels is σr(s), and1

therefore the area of these pixels is s2σr(s). The area of the disc2

is πr2, and therefore the probability that a point falling uniformly3

at random in a covered pixel is within the disc is ≥πr2/(s2σr(s))4

by Jensen’s inequality. �5

We analyse Algorithm N by counting the approximate number6

of basic operations required per lineage jump over a large num-7

ber of jumps. This gives us an expression TN(s) that should be pro-8

portional to the time required by an implementation to simulate a9

single jump when averaged over a large number of lineage jumps.10

Lemma 10. Over a large number of lineage jumps, the expected11

computational cost of a single jump in Algorithm N is12

TN(s, n) ∝ log2(nσr(s))

2σr(s)+

1
ψr(s)

. (5)13

Proof. We proceed by considering the expected contribution of14

each algorithm step when averaged over a large number of lineage15

jumps. Over long timescales, lineages are uniformly distributed16

over the torus, regardless of the initial state of the sample (Barton17

et al., 2010a, Lemma 6.9). Therefore, the probability that two18

lineages occupy the samepixel in a given event is negligible andwe19

therefore know that the expectation of themaximumoccupancy h∗20

is equal to 1.21

Step N2 is executed once for each jump, and since E[h∗] = 1,22

the total contribution of this step is constant.23

Step N3 loops a certain number of times, and involves non-24

constant time operations. SinceE[h∗] = 1,we know thatE[|Q1|] =25

nσr(s), since there are n lineages covering σr(s) pixels each.26

Assuming a balanced tree data structure (Knuth, 1998, Section27

6.2.3) for Qh, each pass through N3 requires log2(nσr(s)) time.28

Since the expected occupancy of a pixel is 1, we therefore have29

|S| = 1 with probability ψr(s), and consequently expect to repeat30

this step 1/ψr(s) times for each lineage jump. Therefore, we have31

a contribution of log2(nσr(s))/ψr(s) per jump for this step.32

Upon reaching N4, the expected value of |S| = 1, and this step33

therefore requires a constant amount of time per lineage jump. In34

step N5 we remove each lineage in C from the σr(s) pixels that it35

covers. Since E[h∗] = 1, the time required to update Pv is constant,36

and the time required to update Qh is log2(nσr(s)) as before. Then,37

since E[|C |] = 1, the contribution of this step is σr(s) log2(nσr(s)).38

Similarly, step N6 adds the parental lineage to σr(s) pixels, and39

therefore also requires σr(s) log2(nσr(s)) time.40

Step N7 is executed atmost n−1 times, and requires a constant41

number of operations. It does not contribute significantly to the42

running time over a large number of jumps.43

Summing the significant contributions from the steps above44

gives us (5), as required. �45

Lemma 10 provides us with a prediction for the expected time46

required to perform a single lineage jump in Algorithm N in terms47

of the sample sizen. It ismore useful, however, to consider the limit48

of large sample sizes, and to derive a prediction that is independent49

of n. In general, we expect s > r , and so σr(s) is between 150

and 10; hence, for realistic sample sizes, the dominant term is51

log2(n)(2σr(s) + 1/ψr(s)). As a result, the optimal pixel size is52

approximately independent of n and can be found by minimising53

2σr(s) + 1/ψr(s). Performing this minimisation numerically we54

find aminimum at s ≈ 2.24r , providing uswith a useful prediction55

for the optimal pixel size in Algorithm N. Fig. 4 shows an excellent56

agreement between the predicted and observed optimal pixel size57

over a wide range of sample sizes.58

Fig. 4. Comparison of the predicted computational cost of a lineage jump in
Algorithm N and the observed cost in a C implementation of the algorithm for
varying pixel size s. The cost of a single jump is found by taking the mean CPU
time required over 108 jumps, using parameters r = 1, u = 1/800 and L = s104 .
To facilitate comparison, the costs reported are relative to the minimum cost; for
example, the predicted value is obtained by calculating TN(s)/TN(2.24).

4. Multilocus coalescent 59

There are two practical approaches to including the effects of 60

recombination in the coalescent algorithm. The first, pioneered by 61

Hudson (1983), is to track the state of m-locus individuals and 62

build m genealogies as we proceed backwards in time, generating 63

common ancestor and recombination events and applying the 64

effects to the ancestral population. Recombination events increase 65

the size of the ancestral population, but do not increase the amount 66

of ancestral material; common ancestor events reduce the size 67

of the ancestral population, and potentially reduce the amount 68

of ancestral material present through coalescence. Coalescence 69

occurs when two or more ancestors trace back to a single parent, 70

and both have ancestral material at one or more loci. Each time a 71

coalescence occurs we update the genealogy at the loci involved, 72

and the simulation terminates when all genealogies are complete. 73

This approach is the basis of the classical ms program (Hudson, 74

2002). 75

The second approach, introduced by Wiuf and Hein (1999), 76

involves first generating the genealogy for the left-most locus 77

and then moving rightwards along the sequence, generating 78

recombination breakpoints. At each breakpoint the current 79

genealogy is modified, and the algorithm terminates when the 80

rightmost point of the sequence has been reached. Wiuf and 81

Hein’s algorithm is considerably more complicated than Hudson’s, 82

but the time complexity of the methods is similar (Wiuf and 83

Hein, 1999). The approach of working along the genome from 84

left to right, however, has led to an approximation that makes 85

simulating the history of large genomic regions much more 86

efficient. In the sequentially Markov coalescent (McVean and 87

Cardin, 2005), the coalescent with recombination is approximated 88

by assuming that the genealogy at a breakpoint depends only 89

on the immediately previous genealogy. This approximation has 90

been used and extended inmany simulation algorithms (Marjoram 91

and Wall, 2006; Chen et al., 2009; Excoffier and Foll, 2011), as 92

the time and space requirements of simulating the history of a 93

sample are greatly reduced by this simplification. We do not use 94

the sequentiallyMarkov coalescent here, as the necessary theory to 95

extend the method to a two-dimensional continuum has not been 96

developed. 97

In this section we extend the single locus coalescent algorithm 98

of Section 3 by adapting Hudson’s approach to the setting of a 99

spatial continuum. We incorporate recombination by letting each 100

8 J. Kelleher et al. / Theoretical Population Biology xx (xxxx) xxx–xxx

individual in the sample consist of m linearly arranged loci, and1

extending the model such that we have ν parents at each event.2

At an event, there is a probability ρ that a recombination event3

occurs between locus ℓ and ℓ+1, and a child derives fromdifferent4

parents at these loci. See Etheridge and Véber (2013) and Barton5

et al. (2013a) for more details on this model of recombination.6

It may seem unusual to allow a child lineage to descend from7

an arbitrary number of parents ν. In events modelling the steady8

reproduction of individuals in a sexually reproducing species we9

have ν = 2 as one might expect. We must also consider events10

thatmodel large-scale demographic shifts, however,where several11

generations may elapse before the local population returns to12

the stationary distribution. In this scenario, the eventual children13

of the event may descend from a number of founders, with14

recombination mixing the contributions of each parent arbitrarily.15

More sophisticated models of recombination may also be required16

for these large-scale events, which can be readily incorporated.17

In the interest of simplicity, however, we assume that all events18

follow the recombination process outlined above.19

In this section we describe Algorithm M, the extension ofQ420

Algorithm N to simulate the ancestry of m-locus individuals.21

The algorithms share the same overall structure, and, besides22

the process of transferring ancestral material from offspring to23

parents, do not differ in significant ways. Rather than writing out24

a full listing of Algorithm M, which would obscure the key points25

and result in needless notational complexity, we concentrate on26

describing the differences between the two algorithms. The first27

changewe require is to generalise the data structures used to track28

the history ofm-locus individuals. We also require an algorithm to29

transfer the ancestral material from children to parents under the30

effects of recombination, recording any coalescences that occur.31

The latter part is far more complex, and we therefore examine the32

process in detail.33

AlgorithmM operates in the samemanner as N, where we have34

n individuals sampled on the torus and simulate until the history35

of the sample is complete. Each locus ℓ has an oriented tree πℓ36

and list of node times τℓ. We also have a sequence η such that37

ηℓ is the next available node in the oriented tree πℓ. The state38

of the ancestral population is most simply represented as set of39

tuples (x, a1 . . . am), where x is the location of an individual and40

the sequence a1 . . . am records the node the individual occupies in41

the genealogy at each locus. If aℓ = 0 (i.e., the null node), then42

there is no ancestral material present in this individual at locus ℓ,43

and so we are not interested in tracking its history. Termination of44

the algorithm is controlled by letting κ track the total amount of45

ancestral material in the sample; initially, κ = nm, and we know46

that all loci have coalesced when κ = n.47

The same method of spatial indexing via the pixels P and48

occupancy Q applies in Algorithm M, and so steps N2–N5 are49

essentially unchanged. Once we have selected the set of children,50

however, we must decide how the ancestral material of these51

individuals is distributed among the parents of the event, taking52

into account the effects of possible recombination and coalescence.53

This process is described in detail in Algorithm G. Afterwards,54

we have ν parents with the ancestral material from the children55

shared among them via their node mappings, and for each parent56

that has ancestral material we insert it into the sample using57

a similar method to N6. Parents without ancestral material are58

discarded.59

For notational convenience, we let a be a matrix of node60

assignments for the children of an event, such that aj,ℓ is the node61

that the jth child occupies in the genealogy at locus ℓ. Similarly, we62

let p be the matrix of node assignments for the parents such that63

pk,ℓ is the node that the kth parent occupies in the genealogy at64

the ℓth locus. Initially, parents have nonancestral material at every65

locus (and so pk,ℓ = 0 for all k and ℓ). Then, as the node assignments66

in a are distributed among the parents, taking into account the 67

effects of coalescence and recombination, some of these loci are 68

assigned ancestral material. 69

Algorithm G (Generate Parents). Given the matrix of node map- 70

pings of n child individuals a, generate the node mappings of ν 71

parental individuals p, and update π, τ , η and κ to record coales- 72

cence events. Recombination occurs with probability ρ between 73

adjacent loci. Q5 74

G1. [Initialisation.] Set pj,ℓ ← 0 for 1 ≤ j ≤ ν and 1 ≤ ℓ ≤ m. 75

Then set cℓ ← 0 for 1 ≤ ℓ ≤ m, and j← 1. 76

G2. [Choose first parent] Set k← RU({1, . . . , ν}) and set ℓ← 1. 77

G3. [Ancestral?] Set α← aj,ℓ. If α = 0 go to G7. 78

G4. [Inheritance.] If pk,ℓ = 0, set pk,ℓ ← α and go toG7. Otherwise, 79

if cℓ ≠ 0, go to G6. 80

G5. [Single coalescence] Set cℓ ← 1, β ← pk,ℓ and γ ← ηℓ. Then 81

set πℓ,β ← γ , τℓ,γ ← t, pk,ℓ ← γ and ηℓ ← γ + 1. 82

G6. [Multiple coalescence.] Set πℓ,α ← ηℓ − 1 and κ ← κ − 1. 83

G7. [Next locus.] If RU([0, 1)) < ρ, set k← RU({1, . . . , ν} \ {k}). 84

Then set ℓ← ℓ+ 1 and if ℓ ≤ m go to G3. 85

G8. [Next child.] Set j← j+ 1, and if j ≤ n go to G2. 86

AlgorithmGproceeds by considering each child j and each locus 87

ℓ in turn. If child j has ancestral material at locus ℓ we transfer 88

this ancestral material to a parent. Each time such an assignment 89

is madewe test for coalescence, which occurs whenmore than one 90

child descends froma particular parent at a given locus, and update 91

the data structures to record this event. 92

For each child jwe first choose a parent uniformly at random for 93

the first locus in step G2. We then consider each locus 1 ≤ ℓ ≤ m 94

in turn; if aj,ℓ ≠ 0 then there is ancestral material and we proceed 95

on to G4. In G4 we test to see if there has already been ancestral 96

material assigned to this parent k at locus ℓ. If this is the case, then a 97

coalescence has occurred at this locus, andwemust record this fact. 98

Because we can havemore than two children in an event that have 99

ancestral material at a given locus, there may be several children 100

descending from a given parent. The first time we encounter a 101

coalescence at a locus,weupdateπ, τ andη to register this event in 102

G5. For subsequent coalescence events at this locuswe skip directly 103

to G6, wherewe record that the parent of nodeα at locus ℓ is ηℓ−1 104

and decrement κ , accounting for the loss of one piece of ancestral 105

material. Recombination between adjacent loci occurs in step G7, 106

where we choose a new parent for locus ℓ+ 1 with probability ρ. 107

Algorithm G is a simple and effective method of transferring 108

ancestral material from children to parents for small numbers of 109

loci (m < 10, say). It requires only one pass through the set of 110

children and transfers ancestral material directly from children to 111

parents, without requiring any intermediate data structures. It is, 112

however, extremely inefficient for largem, wasting large amounts 113

of time and space by storing and iterating over the large tracts 114

of non-ancestral material that enter the sample as we progress 115

backwards in time. 116

This inefficiency can be easily resolved by changing the repre- 117

sentation of the node mappings for an individual from the ‘dense’ 118

sequence a1 . . . am to a sequence of pairs (ℓ, α) mapping loci to 119

nonzero nodes. The first benefit of this ‘sparse’ representation is 120

that the amount ofmemory required to store the state of the ances- 121

tral population is far smaller. Using the dense representation the 122

amount of memory required grows with the size of the ancestral 123

population. Since each individual requires O(m) space to store its 124

nodemappings and the ancestral population can grow up to a limit 125

of nm, we requireO(nm2) space. For largem, this is prohibitive. The 126

sparse representation, on the other hand, requires O(nm) space, 127

since the amount of ancestralmaterial in the sample is nonincreas- 128

ing as we proceed backwards in time. 129

J. Kelleher et al. / Theoretical Population Biology xx (xxxx) xxx–xxx 9

The second benefit of storing pairs that map loci to non-1

null tree nodes is that the time required to distribute ancestral2

material from children to parents is greatly reduced. Algorithm G3

requires O(m) time, regardless of the distribution of ancestral4

material among children. This behaviour is particularly poor for5

large m, since even moderate recombination rates result in a6

rapidly growing ancestral population, implying that the majority7

of loci in a randomly chosen individual do not contain ancestral8

material. We therefore spend the majority of our time looping9

between G3 and G7 doing nothing other than choosing parents10

for loci with nonancestral material. This can be greatly improved11

using the sparse representation, andwe outline theways tomodify12

Algorithm G to generate parents under this approach.13

Assuming that themapping pairs (ℓ, α) are sorted in increasing14

order of locus number, we begin by choosing the parent k to be15

a uniformly distributed element of {1, . . . , ν} as before. We then16

examine the first locus pair (ℓ, α) and assign the ancestralmaterial17

α to locus ℓ of parent k. (Note that the parent for the first locus18

with ancestral material ℓ is still uniformly distributed, even if19

ℓ > 1.) We then examine the next pair (ℓ′, α′), and calculate the20

probability that a recombination event has occurred given the gap21

between the two loci ℓ′−ℓ. If recombination does occur, we choose22

a new parent as before, and then move on to the next pair. Since23

the gaps between loci with ancestral material may be arbitrarily24

large, it is important that we can calculate the probability of25

recombination without iterating over the intervening loci. The26

following lemma allows us to accomplish this.27

Lemma 11. Given a gap of length k between two loci with ancestral28

material in a system with ν parents and a probability ρ of recombi-29

nation between adjacent loci, the probability that they descend from30

different parents is31

φ(k) =
ν − 1
ν

1−

1−

νρ

ν − 1

k

. (6)32

Proof. Consider the following analogue of the recombination33

process over a gap of length k. Suppose we set a0 ← 1 and then for34

each 1 ≤ j ≤ k set aj ← RU({1, . . . , ν}\{aj−1})with probability ρ35

or set aj ← aj−1 otherwise. Let φ(k) be the probability that ak ≠ 1.36

Clearly, φ(1) = ρ. Suppose that φ(k − 1) is the probability that37

ak−1 ≠ 1 and consider φ(k).38

Three possibilities exist in which ak ≠ 1: ak−1 = 1 and39

recombination occurs; ak−1 ≠ 1 and recombination does not40

occur; or, ak−1 ≠ 1 and we recombine to a value not equal to 1.41

Writing these probabilities down, we have42

φ(k) = ρ (1− φ(k− 1))43

+ (1− ρ)φ(k− 1)+ ρ

1−

1
ν − 1

φ(k− 1)44

with φ(1) = ρ. Solving this recurrence gives us (6), as45

required. �46

Using Lemma 11 we can avoid looping over nonancestral47

material to determine the parent of the next locus with ancestral48

material. In this way we can visit each piece of ancestral material49

in turn, assigning it to the correct parent and updating the50

data structures to account for coalescence events, as required.51

Therefore, the overall cost of the process of transferring ancestral52

material from descendants to ancestors in an event is proportional53

to the amount of ancestral material that the children carry. Since54

this is quite small when recombination is fast, the algorithm is an55

effective and efficient method of transferring ancestral material56

under these conditions.57

This approach may seem wasteful, however, when modelling 58

lower levels of recombination, where we expect to see many 59

adjacent loci sharing the same ancestry. In this case, storing the 60

ancestry for each locus in each individual and storing a tree for 61

each locus is unnecessary. A more compact approach is to store 62

a tuple holding the first and the last locus of each segment, and 63

to only store trees for each unique genealogy. Unfortunately, this 64

method has some major pitfalls. Without the use of specialised 65

data structures,maintaining the segments and calculating overlaps 66

becomes a serious burden and negates any advantages of a more 67

compact representation. 68

The ms program (Hudson, 2002) uses this segment approach. It 69

maintains a list of segments representing the distinct genealogies 70

that have been created through recombination, and each ancestor 71

maintains a list of segments mapping their ancestral material to 72

these trees. Each recombination event results in a new segment 73

being created, and each common ancestor event conducts a linear 74

scan of these segments to detect overlaps between the segments 75

the individuals carry and the segments defining the extant trees. 76

The expected number of recombination events in a simulation 77

of the standard coalescentwith a sample of size n is RHn−1 (Hudson 78

and Kaplan, 1985), where Hn is the nth Harmonic number and 79

R = 4Neρ(m − 1) is the scaled recombination rate. (Ne is the 80

effective population size,m the number of loci and ρ the between- 81

locus recombination probability.) Since Hn ≈ ln n+ γ , where γ is 82

the Euler–Mascheroni constant, the expected number of segments 83

is approximately R for large R and small n. 84

Therefore, in the worst case, each common ancestor event in 85

ms costs O(R) time. For large R, this represents an extremely heavy 86

cost. If we follow the example of Chen et al. (2009) and assume 87

Ne = 12 500 and ρ = 1.2× 10−8, we have a scaled recombination 88

rate of R = 12 000 for a 20 Mb region. Profiling ms under these 89

parameters with a sample of two individuals reveals that over 90

90% of the simulation time is spent performing common ancestor 91

events, compared to around 2% of the time executing recombina- 92

tion events. Since the number of these events is similar (otherwise 93

the simulation would quickly end, or never finish), this demon- 94

strates a major flaw in ms, at least in the case of large R and m. 95

A thorough analysis of the different approaches to maintaining 96

ancestry in coalescent simulations is beyond the scope of this 97

article. The comparison with ms is intended to illustrate that, 98

although our approach is simple, it is effective when the expected 99

amount of ancestral material per ancestor is small. For low levels 100

of recombination, the ms approach is very efficient. It is not 101

clear what type of approach is suitable for large genomic regions 102

with intermediate levels of recombination. This is an important 103

question for the efficiency of coalescent simulation. 104

Ideally, we would like to extend the analysis of Section 3.3 105

and derive the optimal pixel size s for a given neighbourhood size 106

and recombination rate. Such an analysis, however, would require 107

a detailed understanding of the spatial distribution of ancestors 108

and the ancestral material they carry. Since very little is currently 109

known about these distributions, we must defer a full analysis of 110

the multilocus algorithm to future work. Before this analysis is 111

performed, we can make some basic recommendations about the 112

choice of pixel size for multilocus simulations. Firstly, the optimal 113

value for sderived for the single locus case in Section 3.3 is certainly 114

an upper bound on the value of s that should be used formultilocus 115

simulations. Any simulations in which we expect many ancestors 116

to be in close proximity for extended periods of time should have 117

s < 2.24r . On the other extreme, for s < 1 memory requirements 118

for maintaining the spatial indexes increase sharply. In this case, 119

anypotential advantages of faster simulationmaybe overwhelmed 120

by excessive memory usage, preventing replication over available 121

CPU resources. 122

10 J. Kelleher et al. / Theoretical Population Biology xx (xxxx) xxx–xxx

5. Conclusion1

A central goal of the spatial Λ-Fleming–Viot continuum model2

is to provide a means of incorporating events over different scales,3

ranging from the steady process of local reproduction to large-4

scale demographic shifts. Without such events, we cannot explain5

the patterns that we observe in nature over large spatial scales6

since the process of diffusion is too slow (Barton et al., 2010b). The7

continuummodel incorporates these fluctuations in a flexible and8

elegant manner, by allowing events of different radii and impacts9

to occur at different rates. For example, the effect of rare large10

events modelling demographic shifts along with frequent small11

events modelling reproduction is analysed in detail by Barton et al.12

(2010a).13

In the interest of simplicity we have given detailed algorithm14

listings for a single class of event occurring at a fixed rate,15

and outlined the changes required to generalise to an arbitrary16

number of event classes from the disc model. Incorporating events17

from different models, however, is not so straightforward, as18

our methods here depend entirely on the geometry of the disc19

model. Including events from the Gaussian replacement model20

(Barton et al., 2010b), for example, would require a different21

approach. This is not amajor drawback, however. It is only themost22

frequent reproduction events that must be from the disc model;23

rarer events can have any geometry that we wish, provided we24

follow the method outlined in Section 3.1 for incorporating large-25

scale events. Since these events are rare with respect to regular26

reproduction, there is little point in conditioning on the events27

affecting individuals and is in fact more efficient to simulate their28

effects directly.29

We have discussed and analysed the algorithms in this articleQ630

in a great deal more detail than is customary in the literature.31

Given the centrality of coalescent simulation inmodern population32

genetics, it is important that the algorithms used are both correct33

and as efficient as possible, and this can only be achieved via34

detailed algorithm listings and analyses. The consequences of35

hiding these important details are well illustrated by the ms36

program. As our brief analysis in Section 4 revealed, ms is very37

efficient for small numbers of loci, but scales extremely poorly for38

large genomic regions. However, this fact is not widely known and39

ms is usually regarded as being very efficient (Carvajal-Rodríguez,40

2008; Chen et al., 2009). The performance of ms is in effect taken to41

be ameasure of the inherent difficulty of simulating the coalescent42

with recombination. Consequently, researchers have abandoned43

the full coalescent and resorted to various approximations (Liang44

et al., 2007; Padhukasahasram et al., 2008; McVean and Cardin,45

2005; Chen et al., 2009) in order to simulate larger genomic46

regions. An analysis of the algorithm and the use of the appropriate47

data structures would make simulating the full coalescent many48

times faster than is possible with ms without the need for49

approximation.50

Substantial efforts have been made in this article to avoid51

approximation and to ensure that the process that we simulate52

is precisely equal to the well-defined coalescent process of the53

continuum model. A sceptical reader might argue that this is54

wasted effort, since some approximation to a model which is (at55

best) a cartoon of reality can do little harm. However, this ignores56

one of the most important applications of stochastic simulations:57

assessing the accuracy of analytical methods. Without exact58

simulations, it is very difficult to measure the accuracy of putative59

analytical approximations; deviations from simulation resultsmay60

be due to either approximations of the model in simulations or61

to errors in the approximate calculations. Exact simulations also62

allow us to be confident that the data we observe are a result of63

interesting phenomena arising from the underlyingmodel, and not64

some unexpected consequence of an ad-hoc approximation.65

Acknowledgments 66

We would like to thank Amandine Véber for discussions and 67

comments on the manuscript. 68

The first author’s work was supported by EPSRC grant 69

EP/I013091/1. The second author’s work was supported in part by 70

EPSRC grant EP/I01361X/1. The third author’s work was supported 71

by European Research Council grant 250152. 72

Appendix. Calculating identity 73

LetAr(x, z) be the area of the intersection of three discs of radius 74

r , centred at (−x/2, 0), (x/2, 0) and z, and let h =

r2 − x2/4. If 75

we consider z in the upper half plane, the domain of Ar(x, z) is the 76

union of four sets, indicated by the solid arcs: 77

. (A.1) 78

If z is in the region bounded by the x-axis and the arc of radius 79

r centred at (0,−h), Ar(x, z) is constant and equal to Ar(x). 80

Otherwise, if z falls in the region bounded by the arc of radius r 81

centred on (0, h), Ar(x, z) is the area of a circular triangle (Fewell, 82

2006). Finally, if z falls within the region bounded by the arc of 83

radius 2r centred on (−x/2, 0), Ar(x, z) = Ar(

(z1 + x/2)2 + z22); 84

a similar rule applies to the region bounded by the arc centred on 85

(x/2, 0). For all z outside of these regions, Ar(x, z) = 0. 86

Let Fµ(x) be the probability of identity in state of two genes 87

sampled at distance x, under the infinitelymany allelesmodelwith 88

mutation at rate µ (Barton et al., 2010b, 2013a). After rephrasing 89

Eq. (A.8) of (Barton et al., 2013a) in terms of the Ar functions, 90

converting to polar coordinates and simplifying, we obtain 91

φ(x)Fµ(x) =
u2

ν
Ar(x)+

∞

0
K(x, y)Fµ(y) dy (A.2) 92

where φ(x) = 2µ/Λ+2uπr2−u2Ar(x), the kernel K(x, y) is given 93

by 94

K(x, y) = f
y
r

1−

1
ν

Ar(x)
r

95

+
4uy
πr2

 π

0
Q1(x, y, θ)− uQ2(x, y, θ) dθ, 96

with 97

Q1(x, y, θ) = Ar

x2 − 2xy cos θ + y2

98

Q2(x, y, θ) = Ar

x, (−x/2+ y cos θ, y sin θ)

. 99

Here, f (x) is the probability density function of the distance 100

between two points sampled independently and uniformly at 101

random within the unit disc (Alagar, 1976), 102

f (x) =
x
π

4 arccos(x/2)−

4− x2

, x ∈ [0, 2], 103

with f (x) = 0 for x > 2. The value of φ(x) is found by observing 104

that

R2 Ar(|z|) dz = (πr2)2 and

R2 Ar(x, z) dz = πr2Ar(x). 105

Eq. (A.2) is a Fredholm equation of the second kind, and can 106

be solved numerically using a number of methods (Atkinson, 107

1997), with the Nyström method being most convenient. Solving 108

J. Kelleher et al. / Theoretical Population Biology xx (xxxx) xxx–xxx 11

the equation in this manner requires the repeated evaluation of1 π
0 Q1(x, y, θ) − uQ2(x, y, θ) dθ , which can be time consuming2

and inaccurate if not done with care. In particular, integrating3

Q2(x, y, θ) can be troublesome. Performing the integration from4

0 to π piecewise, however, as the arc of radius y centred at5

(−x/2, 0) intersects with the arcs defining the domain of Ar(x, z),6

as indicated in (A.1), gives us a fast and accurate numericalmethod.7

References8

Alagar, V., 1976. The distribution of the distance between random points. J. Appl.
Probab. 13, 558–566.

9

Atkinson, K., 1997. TheNumerical Solution of Integral Equations of the SecondKind.
Cambridge University Press.

10

Barton, N.H., Etheridge, A.M., Kelleher, J., Véber, A., 2013a. Inference in two
dimensions: allele frequencies versus lengths of shared blocks. Theor. Popul.
Biol. 87, 105–119.

11

Barton,N.H., Etheridge, A.M., Véber, A., 2010a. Anewmodel for evolution in a spatial
continuum. Electron. J. Probab. 15, 7.

12

Barton, N.H., Etheridge, A.M., Véber, A., 2013b. Modelling evolution in a spatial
continuum. J. Stat. Mech. P01002.

13

Barton, N.H., Kelleher, J., Etheridge, A.M., 2010b. A new model for extinction and
recolonisation in two dimensions: quantifying phylogeography. Evolution 64
(9), 2701–2715.

14

Carvajal-Rodríguez, A., 2008. Simulation of genomes: a review. Curr. Genomics 9
(3), 155–159.

15

Chen, G.K., Marjoram, P., Wall, J.D., 2009. Fast and flexible simulation of DNA
sequence data. Genome Res. 19, 136–142.

16

Crawford, T.J., 1984. What is a population? In: Shorrocks, B. (Ed.), Evolutionary
Ecology. Blackwell Scientific Publications.

17

Etheridge, A.M., 2008. Drift, Draft and Structure: Some Mathematical Models of
Evolution, 80. Banach Center Publ., pp. 121–144.

18

Etheridge, A.M., Véber, A., 2013. The spatial Λ-Fleming–Viot process on a large
torus: genealogies in the presence of recombination. Ann. Appl. Probab. 22 (6),
2165–2209.

19

Excoffier, L., Foll, M., 2011. Fastsimcoal: a continuous-time coalescent simulator
of genomic diversity under arbitrarily complex evolutionary scenarios.
Bioinformatics 27 (9), 1332–1334.

20

Felsenstein, J., 1975. A pain in the torus: some difficulties with the model of
isolation by distance. Am. Nat. 109, 359–368.

21

Fewell, M., 2006. Area of common overlap of three circles. Australian Dept. Defense. 22

Hudson, R.R., 1983. Properties of a neutral allele model with intragenic
recombination. Theor. Popul. Biol. 23, 183–201.

23

Hudson, R.R., 2002. Generating samples under a Wright–Fisher neutral model of
genetic variation. Bioinformatics 18 (2), 337–338.

24

Hudson, R.R., Kaplan, N., 1985. Statistical properties of the number of recombi-
nation events in the history of a sample of DNA sequences. Genetics 111 (1),
147–164.

25

Kelleher, J., Barton, N.H., Etheridge, A.M., 2013. Coalescent simulation in continuous
space. Bioinformatics 29 (7), 955–956.

26

Knuth, D.E., 1997a. Fundamental Algorithms, third ed. In: The Art of Computer
Programming, vol. 1. Addison-Wesley, Reading, Massachusetts.

27

Knuth, D.E., 1997b. Seminumerical Algorithms, third ed. In: The Art of Computer
Programming, vol. 2. Addison-Wesley, Reading, Massachusetts.

28

Knuth, D.E., 1998. Sorting and Searching, second ed. In: The Art of Computer
Programming, vol. 3. Addison-Wesley, Reading, Massachusetts.

29

Knuth, D.E., 2011. Combinatorial Algorithms, Part 1. In: The Art of Computer
Programming, vol. 4A. Addison-Wesley, Upper Saddle River, New Jersey.

30

Liang, L., Zöllner, S., Abecasis, G.R., 2007. GENOME: a rapid coalescent-based whole
genome simulator. Bioinformatics 23 (12), 1565–1567.

31

Malécot, G., 1948. Les mathématiques de l’hérédité. Masson et Cie, Paris. 32

Marjoram, P., Wall, J.D., 2006. Fast coalescent simulation. BMC Genet. 7, 16. 33

McVean, G.A.T., Cardin, N.J., 2005. Approximating the coalescent with recombina-
tion. Philos. Trans. R. Soc. Lond. Ser. B 360, 1387–1393.

34

Morjan, C.L., Rieseberg, L.H., 2004. How species evolve collectively: implications of
gene flow and selection for the spread of advantageous alleles. Mol. Ecol. 13 (6),
1341–1356.

35

Padhukasahasram, B., Marjoram, P., Wall, J.D., Bustamante, C.D., Nordborg, M.,
2008. Exploring population genetic models with recombination using efficient
forward-time simulations. Genetics 178 (4), 2417–2427.

36

Wiuf, C., Hein, J., 1999. Recombination as a point process along sequences. Theor.
Popul. Biol. 55 (3), 248–259.

37

Wright, S., 1943. Isolation by distance. Genetics 28 (2), 114–138. 38

Wright, S., 1946. Isolation by distance under diverse systems of mating. Genetics
31 (1), 39–59.

39

Wright, S., 1978. Variability Within and Among Natural Populations. In: Evolution
and the Genetics of Populations, vol. 4. The University of Chicago Press,
Chicago.

40

