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Abstract

The pressure-velocity correlation and return to isotropy term itl the Reynolds stress

transport equation are analyzed using the Yakhot-Orszag renormaliza.tion group. The per-

t,urbation series for the relevant correlations, evaluated to lowest ord¢-r in the e-expansion

of t.he Yakhot-Orszag theory, are infinite series in tensor product powers of the mean ve-

h_city gradient and its transpose. Formal lowest order Pad5 approximations to the sums of

these series produce a fast pressure strain model of the form proposed by Launder, I¢eece,

and Rodi, and a return to isotropy model of the form proposed by 12otta. In both cases,

the model constants are computed theoretically. The predicted 12,eynolds stress ratios in

simple shear flows are evaluated and compared with experimental dat.a. The possibility

is discussed of deriving higher order nonlinear models by approximating the sums more

accuratc'ly.

'*Work funded under NASA Cooperative Agreement NCC3-233. ICOMP Program Director,

Louis A. Povinelli.



Introduction

The modelling of the pressurecorrelation and return to isotropy term in the Reynolds

stresstransport equation remainscontroversial.1,2,3Models will be derived here using the

Yakhot-Orszag renormalization group4partially along the lines of our previous works. The

result is a model for the fast pressure-strainterm of the form proposedby Launder, Rcece

and Rodi6 (LRR) and a model for return to isotropy of the form proposedby Rotta 7 with

theoretically computed constants in good agreement with accepted values. As usual in

investigations of this sort , the priority of Yoshizawa in deriving a pressure strain model

analytically 8 must be noted.

The analysis requires some new ideas in renormalization group theory recently intro-

duced by Yakhot et al 9. As Yakhot et al9 emphasize, the application of the renormalization

group mode elimination formalism to shear flow creates a double perturbation series in

powers of e, the parameter of the isotropic theory, and in powers of a dimensionless strain

rate, r/= SIr�e, where K denotes the turbulence kinetic energy, e denotes the dissipation

rate, and S is a measure of the mean strain: in Ref. 9, S 2 = _(°v--_0_.+ 0__v_0_mJ _0x. • The

present analysis also leads to double expansions of this type, with the powers S n replaced

by tensors S (n) homogeneous of degree u in the mean velocity gradient _TU and its trans-

pose. It will be convenient to retain the terminology of Ref. 9 and call this expansion the

r/-expansion; when the distinction is pertinent, the expansion of Ref. 9 will be called a

scalar 0-expansion.

The heuristic program of evaluating all scalar amplitudes to lowest order in ¢ has

proven successful in the past: apparently, the ,-expansion is an asymptotic series with

sum given very nearly by its first term 1°. Unfortunately, there is no analogous basis for



truncating the y-expansion. There are fundamental reasons for this distinction between

these expansions. The present y-expansion is tensorial: successively higher order terms

do not introduce merely numerical corrections, but increasingly complex asymmetries into

the theory. Truncation therefore imposes a possibly inappropriate symmetry or other

constraint on the model. Thus, in Ref. 5 the r/-expansion for the Reynolds stress 7 was

truncated at second order as suggested by previous work of Yoshizawa 11 and Speziale 12.

Although this type of modelling permits unequal normal stresses in a simple shear flow,

it is not maximally asymmetric: for example, in a flow with mean velocity components

Ui(xl, x2), a cubic model including a term r ,_ VU2VUT+Vu_Tu T2 would permit nonzero

r23 in the presence of vanishing OU2/Ox3, an effect which cannot be ruled out in advance.

Although generalizations 13 of the Cayley-Hamilton Theorem limit the number of in-

dependent tensors S (n), anisotropy and asymmetry cannot exist at all without some terms

of higher order in 77; indeed, truncation at lowest order in 77 just produces a theory of

isotropic turbulence. But the series truncated at any higher order can be unsatisfactory in

flow regions in which some components f ov_ _K/¢oxj / _ are large. In such regions, the truncated

series is dominated by its highest order terms. For the quadratic stress models of Refs. 5,

11, 12, this domination can produce negative normal stresses in the buffer layers of wall

bounded flows. Increasing the order of truncation obviously exacerbates this problem.

It follows that finite truncation of the rkexpansion is theoretically unsatisfactory.

Yakhot et al 9 therefore propose that this expansion must be summed, even if only ap-

proximately, and have suggested a prototype summation in a different context. It should

be noted that the same issues arise naturally in Yoshizawa's formalism, which also gen-

erates infinite series in the mean velocity gradients (and in other quantities as well) for



correlations of interest in turbulence modeling. Yoshizawa has concluded independently

that summation of this series is essential and has also derived a Reynolds stress transport

model by introducing such summations 14.

In this paper, the perturbation series which the Yakhot-Orszag renormalization group

generates for the correlation

< 0p)IIij =-- ui_ +
(1)

is summed by a low order Padd approximation. Coefficients are evaluated to lowest order

in the e expansion, but the summation includes effects of all orders in q. The result is

essentially identical to the "model 1" proposed by Launder, Reece, and Rodi 6. An entirely

analogous treatment of return to isotropy yields a model of the form proposed by Rotta 7.

Combining these models leads to a preliminary Reynolds stress transport model. The

problem of closing the Reynolds stress diffusion terms is addressed. This problem also

leads to an infinite sum.

While it is encouraging that renormalization group methods can be used to derive

familiar models, the goal of this investigation is not limited to providing theoretical jus-

tification for the LRR and Rotta models, which although widely applied are nevertheless

deficient in several well-documented respects 1'2'3. Instead, renormalization group methods

together with approximate summation of the rl-expansion can be used to derive higher

order and nonlinear corrections to these models in a systematic fashion. Explicit develop-

ment of such models is left to future investigations.

I. Analysis of the Pressure Correlation



The analysis will follow Yakhot and Orszag's derivation of turbulence transport models

by renormalization group methods 4. The equation for velocity products is

where v0 denotes the kinematic viscosity. The product -(uiOp/Oxj+uiOp/Oxi ) on the right

side of Eq. (2) will become the correlation Ilij defined by Eq. (1) following elimination of

all fluctuating modes. Its Fourier transform is

j uj(k - +)iqi q-2(qp _ Qp)uq(+ - Q)Qq up(Q,)d+ dQ/(2rc) 2d+2

+ / uiCk - _t)iqj q-2(qp _ Q+,)uqCO - (_)Qq u,C(_)dO d(_/C27r) 2d+2

Here the standard notation

(3)

= (w,k) k2 = k. k

is used and d = 3 is the number of space dimensions. Introduce an ultraviolet cutoff

Ad of the order of the inverse Kolmogorov scale (V3o/_)1/4; only inertial range scales with

k _< Ad will be treated explicitly. Introducing a parameter r initially near zero, partition

wavenumber space 0 < k < Ad into the two intervals 0 _< k _< Ade-" and Ade -r _< k _< Ad.

Denote velocity components with wavevectors in the first interval by the superscript <

and those in the second by >. Introducing this decomposition into Eq. (3) produces eight

terms; however, as in analogous calculations in Ref. 4, only three will contribute at the

lowest order in e:



f

II = f u>(k - +)iqiq-2(qp - Qp)u<(+ - O)Q+u>(O)d+dd)/(27r) 2d+2

III= f u<(k - _l)iqiq-2(qp - Qp)u>(+ - Q,)Qqu>(Q)d(_dO,/(2:r) 2d+2

The > modes are to be eliminated from these expressions by iterated use of the

randomly forced Navier Stokes equations

i /(-i w + v0 k 2) ui (k) = -_ A0 Piton (k) um (/¢ - q) um (_) dO/(27r) d+l + fi

where

Pimn(k) =km P_,(k) + kn Pim(k)

Pin(k) = k./k 2

and the Gaussian random force fi is defined by its correlation function

' k'<fi(]c) fj(k')> : 2(2:r)d+lDo_(W--[-w )_(k+ )k -y

The choice y = d generates a Kolmogorov inertial range. A detailed exposition of this

procedure can be found in Ref. 4. It will suffice to note here that the result of the

mode climination is a series in powers of u < and A0. At each order in u <, perturbation

theory will produce a finite number of types of terms with amplitudes given as series in

A0. Under iterated mode elimination to the limit r ---+ cx_, the expansion in A0 proves to

be an expansion in powers of e = 4 + y - d. This is the e-expansion of the Yakhot-Orszag

theory. Previous experience 4 and preliminary analysis 1° suggest that the amplitudes are

best evaluated at lowest order in e with e set to zero. This procedure will be followed here.



Thus, the perturbation series will be written as

//= T0 +T1 +-..

where Tn is of order n in u < and all amplitudes are evaluated to lowest order in e. To

lowest order in e and SK/¢

III= f _(q)qi qp q-2 Qg uj(k)uq(-Q,)up(O,) d_/(27r) a+l =-0

since incompressibility implies Qq uq -_- O. Now term III is formally proportional to qi uj

and since only indices i and j are uncontracted, the combination Qp up or Qq uq must

occur at all orders. Accordingly, term III vanishes identically.

Lowest order analysis of term I gives

qiqp q-2-v {ic(O)l2p,q (q) 2Do d_/(2r) d+l }. ikq up(_:)

Adding the corresponding term from II and the result of ij index interchange leads to

(ou? ou; (4)

where T1 satisfies the recursion relation

dTl 6 :D

dr 15 vA 2
(5)

In Eq. (5), y has been set equal to d to obtain Kolmogorov scaling and

T) = 2DoSd/(2r) d

7



A = Ade -r

where Sd denotes the area of the d-dimensional sphere. Integrating the recursion relation

(5) in the high Reynolds number asymptotic limit 4 r _ oc,

2

_'1-- _K (6)

Eqs. (4) and (6) give

TI = _K \0_i + 0x, }

in agreement with the analysis of Crow) 6

(7)

At the next order in SK/¢,

I = / qiqp q-2 { Pj,-s (-q) G(-_) [G(_ - ())12 x

pq_ (Q _ q) [Q _ ql-V 2Do. v_(k - Q) }d_/(2rc) d+l.
iQq up(O,) + (ij) (8)

where (i j) indicates the result of ij index interchange in the previous term.

contribution from H,

Adding the

_.2_6_51 [16(0u < Ou<] o_< ,Ou S 0u_<h oU,<l(O)
T2: k-_xp +-_-xj ] 0---_p + 2 _,0---_p +-_xj ]-0--_-x/j +(ij)

where (0) indicates the deviatoric part: it is immediate that the ij index contraction of

Eq. (8) vanishes. The amplitude T2 satisfies

dT2 :D

dr 4u2A 4

In the high Reynolds number limit,



1 14o 0u l(0 T2 =-10 5 4 3 _ _ \Oxp + Oxi,} uzp+4\Oxp+ uxi) OxjJ
+(ij)

1 [16 fOUi OUp'_ OU i (OUi OUp'_ 0Up] (°)- 21 v \Oxp + "-_xi] _ + 2 \Oxp + Oxi ] "-_xjJ + (ij) (9)

The next order will produce a term T3 containing cubic products of velocities u <.

In view of the form of the LRR model, it is reasonable to ask whether a term with only

one gradient, proportional in the high Reynolds number limit to rVU might occur at this

order. Such terms do occur, but they cancel. Evaluation of 7"3 proves to require expansions

of the projection operators to second order, leading instead to terms S TM homogeneous of

degree three in the mean velocity gradient and its transpose. In general, the term T,_ of

order n has the form S(n)(K/e) ". As noted in the Introduction, it will be imperative to

include effects of all orders in SK/e in the model, but because the terms Tn involve ever

higher order derivatives of the transverse projection operators, they do not have an obvious

law of formation. Therefore, an exact summation does not appear feasible.

It can be verified that the terms in braces in T1 and T_ are the lowest order terms in

the expansion of the correlation spectrum tensor Emn with the property

f

umu, = J Emn (q)
dq

and that this identification holds to all orders. Thus, perturbation theory gives the stan-

dard result

f 0GI-Iij = q-2 [qipEjq + qjpEiq] dq . _Xq



but with a seriesfor the right hand side which can be evaluated explicitly to any finite

order. In fact, in view of Eqs. (7) and (9),

IIij =-_ K \Oxi + Oxi ]

16 (av, av,_ au.., ,,,avj au,_ av,]

2 rfau, av, au,, :avj au,,)av,,]
-2-f_'L_ox, + o,,/YKx_ +LYKx_+ ox, J ox, J +_ s(n)(K/_)"

n>3

(10)

A simple approximate summation is obtained by introducing into Eq. (10) the perturbation

series s for u-i-_ (°) in the form

V
ou, ou, 
Ozl + -ff_zi] = -u'u_°) + _" s(n)(g/e)"

n>2

and dropping the quadratic terms. The resulting model,

5 \Oz i + Oxi]

+ C,2 [u--7_(°) OUp

+ c,,/ui_,,

., ._., o) OUp (0)
+ ujup --:---

Oxi

(o)

(11)

with

Cel = --16= .7619 C,2 = __2 = .0952 (12)
21 21

agrees with the perturbation series (10) to terms of order S (3). However, unlike the explicit

quadratic model which results from simply dropping the O(S (a)) terms in Eq. (10), this

model includes effects of all order in SK/e. The consequences of this fact will be discussed

,v

later. This type of summation l_as also been applied by Yoshizawa TM. Eqs. (11) and (12)

10



canbe comparedwith Launder, Reeceand Rodi's "model 1", Eq. (1i) with the empirically

adjusted constants

Ci.1 -- .7636 C÷2 = .1091 (13)

The constants C÷1 and Ce2 are not chosen independently; instead, to insure certain con-

sistency properties 6'7, they are linear functions of a parameter (72. The LRR model cor-

responds to the choice C2 = .4; Eqs. (11) and (12) correspond instead to the choice

C2 =8/21 ,-,.36.

The approximate summation used to derive Eq. (11) can be systematically gener-

alized to generate an infinite number of models for Ilij. For example, suppose that the

perturbation series for r is introduced into the cubic terms in the perturbation series (10)

instead of in the quadratic terms as above. This substitution will produce a model which

can be written symbolically in the form

/'/ ,_ S (1) -{- 8 (2) -._ T(S(1) ' -_- 8(2) ')

where rS (i)' denotes a sum of matrix products in all possible orders of 7- and terms S (i).

The requirement that the original series agree to order S (4) with the approximation when

r is replaced by its perturbation series determines this approximation uniquely.

There is obviously a strong formal resemblance between this approximation scheme

and Pad_ approximation. They differ in the introduction of r as an auxiliary quantity, but

more fundamentally in the non-commutativity of all of the variables r, _7U, and _TUT.

It will be evident in Sect. IV that introduction of these approximations into a Reynolds

11



stresstransport equation will lead under suitable hypotheses to algebraic models for r of

the form

which formally express r as a ratio of polynomials of degree n in _U and "_TUT. It is

noteworthy that the LRR model is the lowest order member of this series. Moreover, the

analysis suggests that there is no unique optimal form for the closure of// in terms of

7", VU, and vuT; instead, there is a series of approximations of (presumably) increasing

accuracy.

The LRR model has been criticized by Shih and Lumley 2 because it fails to insure

realizability at the limit of two component flow. Speziale 1 has found different limitations

when this model is applied to homogeneous shear flow. It is not clear whether a different

summation procedure would lead to models which could answer these criticisms, perhaps

of the forms proposed in Refs. 1 and 2. However, these references also indicate that

what conditions a good model should satisfy is itself a somewhat controversial question.

Accordingly, the agreement of this theory with a plausible and often used pressure strain

model is encouraging.

II. The Return to Isotropy Model

The analytical description of return to isotropy is no less controversial than tile mod-

eling of the fast pressure strain term 3. In the usual approach to turbulence modeling, in

which correlations generated by Reynolds averaging are closed phenomenologically, this

process is considered to result partly from the pressure correlation through a "slow" term

12



independent of the mean flow, and partly from the deviatoric part of the dissipative cor-

relation \/v0____e_.__}oxpoxp • From this viewpoint, the analysis in Sect. I is incomplete because

it discloses only a term proportional to the mean velocity gradient, but no slow term.

The return to isotropy will be derived here by renormalization group methods folIowing a

suggestion of Yakhot 17.

Prom the renormalization group viewpoint, it is natural to investigate the return to

isotropy, even independently of the stress transport equation, by writing the perturbation

series for

Oui ou+ f u_(k _ CT)(_i_o)w(CT)d4+ (ij ) (14)u+--gi- + u_---_-=

This perturbation series differs from the perturbation series for the Reynolds stresses previ-

ously reported 5 only in the occurence of an additional factor -iw in all frequency integrals.

It is therefore natural to identify the sum of this series as a functional of the Reynolds

stresses which, like the slow term of turbulence modeling, is independent of the mean flow.

By substituting the Navier-Stokes equations for the time derivatives in Eq. (14), one just

recovers the equations of motion for velocity products, Eq. (2); thus, the quantity

, / Out Ou+\
= + i

which results from eliminating all fluctuating modes from Eq. (14) contains contributions

from the pressure correlation through terms containing the transverse projection operator

and contributions from the dissipative correlation through the terms containing u0.

By evaluating these terms in the form of Eq. (14) and insisting that the sum be

independent of the mean flow, we are extracting properties which were not disclosed in the

analysis of Sect. I.

13



The analysis is straightforward. Only the deviatoric terms require attention because

the part of the correlation proporational to _i1 contributes to the transport equation for

K which has been analyzed by Yakhot and Smith 15. The lowest order deviator appears at

first order in r/; to lowest order in e

where

(cgUi OUj_ (15)

dT_ 1 _3

dr 15 uA 2
(16)

In view of the form of the Rotta model, it is reasonable to seek terms at the next order pro-

portional to uiuj. As in Sect. I, such terms do appear, but cancel exactly. This apparently

ubiquitous cancellation was also obtained by Smith and Reynolds is in an analysis of the

transport equation. Accordingly, the second order analysis in r/produces quadratic terms

in the velocity gradients. Finite truncation of this series violates the requirement that

return to isotropy be independent of the mean flow. Therefore, we must seek a reasonable

approximate summation. The form of the lowest order term given in Eqs. (15) and (16)

suggests

-- 1.,., __ --UiU 3
IliJ V \OXj + OXi ] V

Despite its triviality, this replacement does produce an approximate sum which agrees

exactly with perturbation theory to lowest order. It therefore can be considered a type of

Pad6 approximation. This lowest order summation yields

14



where

= (17)

dZ 1 D

dr 15 v2A 2

At the infinite Reynolds number asymptotic limit, Eqs. (17) and (18) iterate to 4

(18)

i _ 0

IIij--_CR-_UiUj-( )

where, in the Yakhot-Orszag theory, CR = DIe ,.., 1.6.

(19)

Equation (19) is therefore simply

the standard Rotta model with Rotta constant --_ 1.6 in agreement with an earlier proposal

of Yakhot 17.

A preliminary discussion of higher order summation may be appropriate. By analyz-

ing the spectral dynamics of the return to isotropy, Weinstock 3 concluded that the shear

and normal stresses relax at different rates. Although this behavior is obviously not ac-

commodated by the Rotta model, it is consistent with the present theory: the perturbation

series for II' is obtained from the series for r by multiplying the term of order n by the

factor Cne/K for some constant Cn. The Cn are all unequal; therefore, the Rotta model

is not exact. Now comparison with the series for r shows s that relaxation of the shear

stress is governed by the linear term S (1), whereas relaxation of the normal stresses is

governed by the quadratic term 8 (2). Since C2 # Ca, these stresses relax at different rates.

The difference is suppressed in the Rotta model, which arose in the present formalism by

replacing all of the C, by Ca.

15



III. Reynolds Stress Transport Models

The renormalization group describes the effect of the universal small scales of tur-

bulence on the large scales. Therefore, convection and production, which are determined

entirely by the large scales, cannot be derived by the renormalization group and must be

introduced instead by Reynolds averaging is. Combining the usual convection and produc-

tion terms with the pressure correlation and return to isotropy models, Eqs. (11) and (19),

gives the Reynolds stress transport equation

0% OxpJ

/--(o) ov, ov,' (°)
+c 2/u,u, NTx + 0x, ] + diff. (.90)

where "diff" denotes diffusion terms which will be discussed later. The predictions of

models of the form (20) for homogeneous shear flow, in which the diffusion terms vanish,

have been analyzed definitively by Speziale) 9 It will be useful to generalize this analysis

somewhat and consider any simple shear flow with exactly one nonvanishing mean velocity

gradient component S = OUI/Ox2, in which diffusion of all Reynolds stress components is

negligible, and in which u--=,-,_/K is constant. These are the conditions under which Rodi's

algebraic models 2° can be derived and include homogeneous shear flow as a special case.

It follows from Eq. (20) that under these conditions,

4 PIe

(u--i--_/K)2 =1-5 CR + P/¢- 1

2 P/e 2
-'_ (CR_(-p-Tc_ I) [(C#l-l)2

16



- 4(C÷1 - 1)C_2 + C22]

UlUl(O)/g _ P/¢ [ 4 (C+I -Cn + P/e-1 --3

P/e [ 2-u2u-_2 °)/K--CR + P/¢ - 1 -3 (C+, -

1) + 5 c_.2

4]1) + 5 c_2

where P = -Su-y-u-_ is production. Note in particular that the ratio

(21)

2
-l(c+,- I)+ _c+_

-u,_-7(°)/_ (°)= _2_(C+, - 1) + 4sC+2

(22)

is independent of both P/e and of the model constant CR.

These results can be applied to model calibration. Rotta noted 7 that certain consis-

tency conditions require

8C+1 - C+2 = 6 (23)

In view of Eqs. (22) and (23), the model proposed here, which is defined by the values of

Ciq and C÷2 of Eq. (12) is the unique model of its form for which

Eqs. (21)

-UlU,(°)/u--_-_(°) = 4/3 . (24)

The validity of Eq. (24) can be assessed from the experimental data summarized in Table

II. Other Reynolds stress ratios can also be readily evaluated. Substituting Eq. (23) into

ui--ff-_(°)/g=c*(4Ci.l-_)

17



where

(25)

C* = P/e
CR + P/e - 1

Simple shear flow data suggest that u--i-U-y(°)/K, -u--_--_(°)/K, and -uT_-d(°)/K are all

positive. In view of Eq. (25), this forces C_- 1 to be in the narrow interval

II 7
-- <C÷I <

from about .73 to .78. Values of the Reynolds stressratios for various values of C÷I

appear in Table I.No value of C÷I gives entirelysatisfactoryvalues for allof the ratios;in

particular,the ratio u1_-_l(°)/K_ .4 in homogeneous shear flow cannot be obtained from

a model of thisform.

Phenomenological modelling has suggested numerous modifications of the original

LRR form. The simplest modification retains the form of Eq. (11), but drops the constraint

expressed by Eq. (23). Thus, the constants C_-1 and C÷2 are considered independent, as in

Launder, Reece and Rodi's "model 2 ''6, or in the model of Spezlale, Sarkar, and Gatski 1.

:Justification of this step requires that the idea of modelling each individual correlation in

the exact Reynolds stress transport equation be abandoned; instead, the model is proposed

for the entire equation at once. A reasonable model of this type is Eq. (11) with the

const ants

43 8

C+, = -_ C+2 = 6_

18



chosenso that the Reynolds stresstransport equation reducesto the nonlinear model of

Ref. 5 when convection and diffusion of Reynolds stressare negligible. The valuesof the

Reynolds stressratios for this model in Table I are in excellent agreementwith shear flow

data, but the fundamental validity of suchmodelling is unclear. An alternative procedure

is to explore the higher order summations describedin Sect. I.

A point emphasizedby both Speziale19and Reynolds21canbe noted here, that while

the elementary eddy viscosity formula and its nonlinear generalization5'11,12applied to

simple shearflow give

u,u2/K ,,_ SK/¢ uiu_°)/K ,--, (SK/¢) 2 (26)

for any value of SK/¢, models of the form of Eq. (20) give (26) for moderate SI(/¢, but

ulu2/K "-, const, uiui(°)/K ,,_ const. (27)

in the rapid distortion limit SK/¢ ---+ oc. The finite limit expressed by Eq. (27) also

holds for algebraic Reynolds stress models derived following Rodi's original suggestion 2°,

for example for the model proposed in Ref. 22,

2 K2/¢ (28)
VT = 1---5CR + (P/¢ - 1)

The behavior (26) is certainly incorrect when SK/_ _ _; this reflects the derivation, for

example of the relation VT _'_ K2/6 from Kolmogorov scaling. This derivation assumes

quasi-static spectral evolution in which the Kolmogorov spectrum instantaneously adjusts

to local conditions in both space and time. The finite limit (27) at large SK/¢ can only

19



occur if effectsof all order in SK/e are included. No finite truncation of the r/-expansion

will have this behavior.

IV. Algebraic Reynolds Stress Models

The approximation, due to Rodi 2°, of the Reynolds stress transport equation by an

algebraic model under the conditions of semi-homogeneous flow (negligible diffusion of 7-

and _'/K approximately constant) takes the form

u,uj(°) = - _ _ q- ujup axp ] h- II_i h- IIij (29)

=:

where/'/and II' depend on 7- and VU. Explicit solutions for 7" can be obtained, at least

in principle, for any such approximation 23. Briefly, one introduces a basis for polynomials

in VU, and VU T. The basis contains 11 terms of homogeneity order n <_ 5. Writing v as

a sum of these terms with unknown coefficients and substituting in Eq. (29) leads to the

explicit expression

r/K = _ H_ m) S_ n) (VU, VU T) (30)

where H_ m) is a scalar function of VU and _TU T such that

HI m) ,._ [VU] rn

when [VU[ ---+oc. The assumptions made on the approximate summations require m + n =

0; thus, r/K is bounded when SK/e _ oo. For example, the familiar eddy viscosity

formula is replaced in Eq. (30) by a t'erm _ = :: :

2O



g 2

r~--.<-l)(vu,vvT) +vuT)
C

This is the type of eddy viscositymodification sought by Horiuti24, but with the bound-

edness property expressed by Eq. (27).

r

Pope observed 23 that the coefficients H (-n) in Eq. (30) would certainly be intractably

complex; although they could be explicitly exhibited by symbolic computation, the result

would only pertain to the particular implicit equation for the Reynolds stresses assumed

initially in Eq. (29). Therefore, it is equally reasonable just to postulate simple forms for

the functions H(-"); for example, Eq. (28) suggests the possibility

H(_I) = 2 1

15 Cn - 1 + vr-C-_SK/¢

based on the identification r/K ,._ v/--C--_. This type of modeling could be particularly

interesting when applied to the coefficients of the quadratically nonlinear models of Refs.

5, 11, and 12.

Some modifications of the summation procedures used here suggest themselves. First,

it is perhaps closer to the spirit of Pad4 approximation to substitute H itself into its pertur-

bation series instead of r. The procedure would lead to fast pressure strain models which

are explicit function of _7U and _7U T. Although previous experience strongly suggests

the appearance of 7" in the model, this unconventional procedure may deserve further con-

sideration. A second related possibility is to apply the Pad6 method to the perturbation

series 5 for r directly. This also will produce a family of implicit models linear in _- and of

all orders in VU and VU T, and to explicit models of the form (30). The lowest order such

model, analogous to the LRR model, would have the form

21



uiuj=sK,Sij-V\Oxj + Oxi] +Cl-e \ " "(°)--Oxp + J p OxiJ

with model constants C1 and C2. This is actually the procedure followed by Yoshizawa 14,

although Yoshizawa's two-scale perturbation theory leads naturally to a transport model

rather than to an algebraic model.

V. The Diffusion Term

The diffusion of Reynolds stress arises from the triple correlation

Lowest order analysis of this term will lead to a diffusive term

0 O-ffiuj

Oxp a,- v Oz---'-_

where ar "_ 1.4 in the high Reynolds number limit 4, otherwise expressed, to an isotropic

diffusivity for Reynolds stress _ = art/.

In Ref. 22, we analyzed the diffusion of a passive scalar to second order in the r/-

expansion, and found, as in a similar analysis by Yoshizawa 25, corrections leading to

, K OUi
_ij = _ _ii + '¢ (31)

Ox.i
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Unlike the isotropie diffusivity, this model permits a nonzerodiffusivity _12. However, it

rules out inequality of the normal diffusivities. At the next order, perturbation theory will

correct Eq. (31) with terms quadratic in the velocity gradients. In this theory, unequal

normal diffusivities arepossible. But now the discussionin the Introduction applies again:

it is necessaryto sum this r/-expansion. The type of Pad_ approximation used in Sects.

I-II may lead to a diffusivity dependent on the Reynolds stresses, as in the passive scalar

models of Rogers et al. 26 This type of diffusivity has also been proposed by Launder, Reece

and Rodi n for the Reynolds stresses. The details are considerably more elaborate than for

the pressure correlation, and this possibility will be left for future investigation.

VI. Conclusions

The present analysis of the Reynolds stress transport equation, based on the Yakhot-

Orszag renormalization group and (tensorial) q-expansion summation as suggested by

Yakhot et al. 9, has led to a model transport equation incorporating the well-known LRR

and Rotta models. The analysis gives theoretical support both to these models and to the

constants sometimes used with them. More significantly, it exhibits the LRR and Rotta

models as lowest order approximations, and therefore also supports their replacement with

higher order nonlinear models which would be deduced by more accurate approximate

summations. The consistency of the analysis with higher order effects like the unequal

relaxation rates of shear and normal stresses has been discussed.
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