923 research outputs found

    The nucleotide and partial amino acid sequences of rat fetuin

    Get PDF
    Fetuins are among the major plasma proteins, yet their biological role has remained elusive. Here we report the molecular cloning of rat fetuin and the sequence analysis of a full-length clone, RF619 of 1456 bp with an open reading frame of 1056 bp encoding 352 amino acid residues. The coding part of RF619 was identical with the cDNA sequence of the natural inhibitor of the insulin receptor tyrosine kinase from rat (pp63) except for four substitutions and a single base insertion causing divergence of the predicted protein sequences. Partial amino acid sequences of rat plasma fetuin were in agreement with the predictions based on the RF619 cDNA. Purified rat fetuin inhibited the insulin receptor tyrosine kinase in vitro. Therefore, we conclude that RF619 and pp63 cDNA encode the same protein, i.e. authentic rat fetuin which is a functional tyrosine kinase inhibitor

    Core-periphery structure in networks (revisited)

    Get PDF
    Intermediate-scale (or 'meso-scale') structures in networks have received considerable attention, as the algorithmic detection of such structures makes it possible to discover network features that are not apparent either at the local scale of nodes and edges or at the global scale of summary statistics. Numerous types of meso-scale structures can occur in networks, but investigations of meso-scale network features have focused predominantly on the identification and study of community structure. In this paper, we develop a new method to investigate the meso-scale feature known as coreperiphery structure, which consists of an identification of a network's nodes into a densely connected core and a sparsely connected periphery. In contrast to traditional network communities, the nodes in a core are also reasonably well-connected to those in the periphery. Our new method of computing core-periphery structure can identify multiple cores in a network and takes different possible cores into account, thereby enabling a detailed description of core-periphery structure. We illustrate the differences between our method and existing methods for identifying which nodes belong to a core, and we use it to classify the most important nodes using examples of friendship, collaboration, transportation, and voting networks

    Cannabidiol enhancement of exposure therapy in treatment refractory patients with social anxiety disorder and panic disorder with agoraphobia:A randomised controlled trial

    Get PDF
    Preclinical research suggests that enhancing CB1 receptor agonism may improve fear extinction. In order to translate this knowledge into a clinical application we examined whether cannabidiol (CBD), a hydrolysis inhibitor of the endogenous CB1 receptor agonist anandamide (AEA), would enhance the effects of exposure therapy in treatment refractory patients with anxiety disorders. Patients with panic disorder with agoraphobia or social anxiety disorder were recruited for a double-blind parallel randomised controlled trial at three mental health care centres in the Netherlands. Eight therapist-assisted exposure in vivo sessions (weekly, outpatient) were augmented with 300 mg oral CBD (n = 39) or placebo (n = 41). The Fear Questionnaire (FQ) was assessed at baseline, mid-and post-treatment, and at 3 and 6 months follow-up. Primary analyses were on an intent-to-treat basis. No differences were found in treatment outcome over time between CBD and placebo on FQ scores, neither across (beta = 0.32, 95% CI [-0.60; 1.25]) nor within diagnosis groups (beta = -0.11, 95% CI [-1.62; 1.40]). In contrast to our hypotheses, CBD augmentation did not enhance early treatment response, within-session fear extinction or extinction learning. Incidence of adverse effects was equal in the CBD (n = 4, 10.3%) and placebo condition (n = 6, 15.4%). In this first clinical trial examining CBD as an adjunctive therapy in anxiety disorders, CBD did not improve treatment outcome. Future clinical trials may investigate different dosage regimens. (c) 2022 Published by Elsevier B.V

    A Thermodynamically-Based Mesh Objective Work Potential Theory for Predicting Intralaminar Progressive Damage and Failure in Fiber-Reinforced Laminates

    Get PDF
    A thermodynamically-based work potential theory for modeling progressive damage and failure in fiber-reinforced laminates is presented. The current, multiple-internal state variable (ISV) formulation, enhanced Schapery theory (EST), utilizes separate ISVs for modeling the effects of damage and failure. Damage is considered to be the effect of any structural changes in a material that manifest as pre-peak non-linearity in the stress versus strain response. Conversely, failure is taken to be the effect of the evolution of any mechanisms that results in post-peak strain softening. It is assumed that matrix microdamage is the dominant damage mechanism in continuous fiber-reinforced polymer matrix laminates, and its evolution is controlled with a single ISV. Three additional ISVs are introduced to account for failure due to mode I transverse cracking, mode II transverse cracking, and mode I axial failure. Typically, failure evolution (i.e., post-peak strain softening) results in pathologically mesh dependent solutions within a finite element method (FEM) setting. Therefore, consistent character element lengths are introduced into the formulation of the evolution of the three failure ISVs. Using the stationarity of the total work potential with respect to each ISV, a set of thermodynamically consistent evolution equations for the ISVs is derived. The theory is implemented into commercial FEM software. Objectivity of total energy dissipated during the failure process, with regards to refinements in the FEM mesh, is demonstrated. The model is also verified against experimental results from two laminated, T800/3900-2 panels containing a central notch and different fiber-orientation stacking sequences. Global load versus displacement, global load versus local strain gage data, and macroscopic failure paths obtained from the models are compared to the experiments

    Dominant inhibition of Fas ligand-mediated apoptosis due to a heterozygous mutation associated with autoimmune lymphoproliferative syndrome (ALPS) Type Ib

    Get PDF
    <p>Abstract</p> <p>Background:</p> <p>Autoimmune lymphoproliferative syndrome (ALPS) is a disorder of lymphocyte homeostasis and immunological tolerance due primarily to genetic defects in Fas (CD95/APO-1; <it>TNFRSF6</it>), a cell surface receptor that regulates apoptosis and its signaling apparatus.</p> <p>Methods:</p> <p>Fas ligand gene mutations from ALPS patients were identified through cDNA and genomic DNA sequencing. Molecular and biochemical assessment of these mutant Fas ligand proteins were carried out by expressing the mutant FasL cDNA in mammalian cells and analysis its effects on Fas-mediated programmed cell death.</p> <p>Results:</p> <p>We found an ALPS patient that harbored a heterozygous A530G mutation in the FasL gene that replaced Arg with Gly at position 156 in the protein's extracellular Fas-binding region. This produced a dominant-interfering FasL protein that bound to the wild-type FasL protein and prevented it from effectively inducing apoptosis.</p> <p>Conclusion:</p> <p>Our data explain how a naturally occurring heterozygous human FasL mutation can dominantly interfere with normal FasL apoptotic function and lead to an ALPS phenotype, designated Type Ib.</p
    • …
    corecore