11,779 research outputs found

    Role of Self-Interaction Effects in the Geometry Optimization of Small Metal Clusters

    Full text link
    By combining the Self-Interaction Correction (SIC) with pseudopotential perturbation theory, the role of self-interaction errors inherent to the Local Density Approximation (LDA) to Density Functional Theory is estimated in the determination of ground state and low energy isomeric structures of small metallic clusters. Its application to neutral sodium clusters with 8 and 20 atoms shows that the SIC provides sizeable effects in Na_8, leading to a different ordering of the low lying isomeric states compared with ab-initio LDA predictions, whereas for Na_20, the SIC effects are less pronounced, such that a quantitative agreement is achieved between the present method and ab-initio LDA calculations.Comment: RevTeX, 4 pages, 1 figure available from [email protected]

    Lorentz invariance for mixed neutrinos

    Full text link
    We show that a proper field theoretical treatment of mixed (Dirac) neutrinos leads to non-trivial dispersion relations for the flavor states. We analyze such a situation in the framework of the non-linear relativity schemes recently proposed by Magueijo and Smolin. We finally examine the experimental implications of our theoretical proposals by considering the spectrum and the end-point of beta decay in tritium.Comment: 8 pages, 4 figures. Presented at 2nd International Workshop DICE2004: From Decoherence and Emergent Classicality to Emergent Quantum Mechanics, Castello di Piombino, Tuscany, Italy, 1-4 Sep 200

    Persistent current magnification in a double quantum-ring system

    Full text link
    The electronic transport in a system of two quantum rings side-coupled to a quantum wire is studied via a single-band tunneling tight-binding Hamiltonian. We derived analytical expressions for the conductance, density of states and the persistent current when the rings are threaded by magnetic fluxes. We found a clear manifestation of the presence of bound states in each one of those physical quantities when either the flux difference or the sum of the fluxes are zero or integer multiples of a quantum of flux. These bound states play an important role in the magnification of the persistent current in the rings. We also found that the persistent current keeps a large amplitude even for strong ring-wire coupling.Comment: 15 pages, 10 figures. Submitted to PR

    Electron Confinement Induced by Diluted Hydrogen-like Ad-atoms in Graphene Ribbons

    Get PDF
    We report the electronic properties of two-dimensional systems made of graphene nanoribbons which are patterned with ad-atoms in two separated regions. Due to the extra electronic confinement induced by the presence of the impurities, we find resonant levels, quasi-bound and impurity-induced localized states, which determine the transport properties of the system. Regardless of the ad-atom distribution in the system, we apply band-folding procedures to simple models and predict the energies and the spatial distribution of those impurity-induced states. We take into account two different scenarios: gapped graphene and the presence of randomly distributed ad-atoms in a low dilution regime. In both cases the defect-induced resonances are still detected. Our findings would encourage experimentalist to synthesize these systems and characterize their quasi-localized states employing, for instance, scanning tunneling spectroscopy (STS). Additionally, the resonant transport features could be used in electronic applications and molecular sensor devices.Comment: 12 pages, 11 figures, submitted (minor changes
    • …
    corecore