64 research outputs found

    Composition, Development, and Function of Uterine Innate Lymphoid Cells.

    Get PDF
    Innate lymphoid cells (ILCs), including NK cells, contribute to barrier immunity and tissue homeostasis. In addition to the role of uterine NK cells in placentation and fetal growth, other uterine ILCs (uILCs) are likely to play roles in uterine physiology and pathology. In this article, we report on the composition of uILCs in the endometrium during the luteal phase and in the decidua during early pregnancy. Whereas nonkiller uILC1s and uILC2s are barely detectable in mouse and not detected in humans, a sizeable population of uILC3s is found in human endometrium and decidua, which are mostly NCR(+) and partially overlap with previously described IL-22-producing uterine NK cells. Development of mouse uILC3 is Nfil3 independent, suggesting unique features of uILCs. Indeed, although the cytokine production profile of mouse uILCs recapitulates that described in other tissues, IL-5, IL-17, and IL-22 are constitutively produced by uILC2s and uILC3s. This study lays the foundation to understand how ILCs function in the specialized uterine mucosa, both in tissue homeostasis and barrier immunity and during pregnancy.Work supported by grants from the Wellcome Trust, the Medical Research Council, the British Heart Foundation and the Leukaemia & Lymphoma Research to FC. EB is the recipient of a Centre for Trophoblast Research Graduate Studentship. SB is the recipient of a Marie Curie FP7 Fellowship.This is the final version of the article. It first appeared from the American Association of Immunologists via http://dx.doi.org/10.4049/​jimmunol.150068

    TLR4 and NKT Cell Synergy in Immunotherapy against Visceral Leishmaniasis

    Get PDF
    NKT cells play an important role in autoimmune diseases, tumor surveillance, and infectious diseases, providing in most cases protection against infection. NKT cells are reactive to CD1d presented glycolipid antigens. They can modulate immune responses by promoting the secretion of type 1, type 2, or immune regulatory cytokines. Pathogen-derived signals to dendritic cells mediated via Toll like Receptors (TLR) can be modulated by activated invariant Natural Killer T (iNKT) cells. The terminal β-(1–4)-galactose residues of glycans can modulate host responsiveness in a T helper type-1 direction via IFN-γ and TLRs. We have attempted to develop a defined immunotherapeutic, based on the cooperative action of a TLR ligand and iNKT cell using a mouse model of visceral leishmaniasis. We evaluated the anti-Leishmania immune responses and the protective efficacy of the β-(1–4)-galactose terminal NKT cell ligand glycosphingophospholipid (GSPL) antigen of L. donovani parasites. Our results suggest that TLR4 can function as an upstream sensor for GSPL and provoke intracellular inflammatory signaling necessary for parasite killing. Treatment with GSPL was able to induce a strong effective T cell response that contributed to effective control of acute parasite burden and led to undetectable parasite persistence in the infected animals. These studies for the first time demonstrate the interactions between a TLR ligand and iNKT cell activation in visceral leishmaniasis immunotherapeutic

    HIV-Induced Type I Interferon and Tryptophan Catabolism Drive T Cell Dysfunction Despite Phenotypic Activation

    Get PDF
    Infection by the human immunodeficiency virus (HIV) is characterized by functional impairment and chronic activation of T lymphocytes, the causes of which are largely unexplained. We cultured peripheral blood mononuclear cells (PBMC) from HIV-uninfected donors in the presence or absence of HIV. HIV exposure increased expression of the activation markers CD69 and CD38 on CD4 and CD8 T cells. IFN-α/β, produced by HIV-activated plasmacytoid dendritic cells (pDC), was necessary and sufficient for CD69 and CD38 upregulation, as the HIV-induced effect was inhibited by blockade of IFN-α/β receptor and mimicked by recombinant IFN-α/β. T cells from HIV-exposed PBMC showed reduced proliferation after T cell receptor stimulation, partially prevented by 1-methyl tryptophan, a competitive inhibitor of the immunesuppressive enzyme indoleamine (2,3)-dioxygenase (IDO), expressed by HIV-activated pDC. HIV-induced IDO inhibited CD4 T cell proliferation by cell cycle arrest in G1/S, and prevented CD8 T cell from entering the cell cycle by downmodulating the costimulatory receptor CD28. Finally, the expression of CHOP, a marker of the stress response activated by IDO, was upregulated by HIV in T cells in vitro and is increased in T cells from HIV-infected patients. Our data provide an in vitro model for HIV-induced T cell dysregulation and support the hypothesis that activation of pDC concomitantly contribute to phenotypic T cell activation and inhibition of T cell proliferative capacity during HIV infection

    Molecular definition of group 1 innate lymphoid cells in the mouse uterus

    Get PDF
    Determining the function of uterine lymphocytes is challenging because of the rapidly changing nature of the organ in response to sex hormones and, during pregnancy, to the invading fetal trophoblast cells. Here we provide the first genome-wide transcriptome atlas of mouse uterine group 1 innate lymphoid cells (g1 ILCs) at mid-gestation. The composition of g1 ILCs fluctuates throughout reproductive life, with Eomes-veCD49a+ ILC1s dominating before puberty and specifically expanding in second pregnancies, when the expression of CXCR6, a marker of memory cells, is upregulated. Tissue-resident Eomes+CD49a+ NK cells (trNK), which resemble human uterine NK cells, are most abundant during early pregnancy, and showcase gene signatures of responsiveness to TGF-β, connections with trophoblast, epithelial, endothelial and smooth muscle cells, leucocytes, as well as extracellular matrix. Unexpectedly, trNK cells express genes involved in anaerobic glycolysis, lipid metabolism, iron transport, protein ubiquitination, and recognition of microbial molecular patterns. Conventional NK cells expand late in gestation and may engage in crosstalk with trNK cells involving IL-18 and IFN-γ. These results identify trNK cells as the cellular hub of uterine g1 ILCs at mid-gestation and mark CXCR6+ ILC1s as potential memory cells of pregnancy.This work was funded by a Wellcome Trust Investigator Award 200841/Z/16/Z, the Centre for Trophoblast Research (CTR), and the Cambridge NIHR BRC Cell Phenotyping Hub to FC, the Associazione Italiana Ricerca per la Ricerca sul Cancro (AIRC) - Special Project 5x1000 no. 9962, AIRC IG 2017 Id.19920 and AIRC 2014 Id. 15283 to LM, and Ministero della Salute RF-2013, GR-2013-02356568 to PV. IF was funded by a CTR PhD fellowship

    Contribution of Herpesvirus Specific CD8 T Cells to Anti-Viral T Cell Response in Humans

    Get PDF
    Herpesviruses infect most humans. Their infections can be associated with pathological conditions and significant changes in T cell repertoire but evidences of symbiotic effects of herpesvirus latency have never been demonstrated. We tested the hypothesis that HCMV and EBV-specific CD8 T cells contribute to the heterologous anti-viral immune response. Volume of activated/proliferating virus-specific and total CD8 T cells was evaluated in 50 patients with acute viral infections: 20 with HBV, 12 with Dengue, 12 with Influenza, 3 with Adenovirus infection and 3 with fevers of unknown etiology. Virus-specific (EBV, HCMV, Influenza) pentamer+ and total CD8 T cells were analyzed for activation (CD38/HLA-DR), proliferation (Ki-67/Bcl-2low) and cytokine production. We observed that all acute viral infections trigger an expansion of activated/proliferating CD8 T cells, which differs in size depending on the infection but is invariably inflated by CD8 T cells specific for persistent herpesviruses (HCMV/EBV). CD8 T cells specific for other non-related non persistent viral infection (i.e. Influenza) were not activated. IL-15, which is produced during acute viral infections, is the likely contributing mechanism driving the selective activation of herpesvirus specific CD8 T cells. In addition we were able to show that herpesvirus specific CD8 T cells displayed an increased ability to produce the anti-viral cytokine interferon-γ during the acute phase of heterologous viral infection. Taken together, these data demonstrated that activated herpesvirus specific CD8 T cells inflate the activated/proliferating CD8 T cells population present during acute viral infections in human and can contribute to the heterologous anti-viral T cell response

    Inactivation of TIF1γ Cooperates with KrasG12D to Induce Cystic Tumors of the Pancreas

    Get PDF
    Inactivation of the Transforming Growth Factor Beta (TGFβ) tumor suppressor pathway contributes to the progression of Pancreatic Ductal AdenoCarcinoma (PDAC) since it is inactivated in virtually all cases of this malignancy. Genetic lesions inactivating this pathway contribute to pancreatic tumor progression in mouse models. Transcriptional Intermediary Factor 1 gamma (TIF1γ) has recently been proposed to be involved in TGFβ signaling, functioning as either a positive or negative regulator of the pathway. Here, we addressed the role of TIF1γ in pancreatic carcinogenesis. Using conditional Tif1γ knockout mice (Tif1γlox/lox), we selectively abrogated Tif1γ expression in the pancreas of Pdx1-Cre;Tif1γlox/lox mice. We also generated Pdx1-Cre;LSL-KrasG12D;Tif1γlox/lox mice to address the effect of Tif1γ loss-of-function in precancerous lesions induced by oncogenic KrasG12D. Finally, we analyzed TIF1γ expression in human pancreatic tumors. In our mouse model, we showed that Tif1γ was dispensable for normal pancreatic development but cooperated with Kras activation to induce pancreatic tumors reminiscent of human Intraductal Papillary Mucinous Neoplasms (IPMNs). Interestingly, these cystic lesions resemble those observed in Pdx1-Cre;LSL-KrasG12D;Smad4lox/lox mice described by others. However, distinctive characteristics, such as the systematic presence of endocrine pseudo-islets within the papillary projections, suggest that SMAD4 and TIF1γ don't have strictly redundant functions. Finally, we report that TIF1γ expression is markedly down-regulated in human pancreatic tumors by quantitative RT–PCR and immunohistochemistry supporting the relevance of these findings to human malignancy. This study suggests that TIF1γ is critical for tumor suppression in the pancreas, brings new insight into the genetics of pancreatic cancer, and constitutes a promising model to decipher the respective roles of SMAD4 and TIF1γ in the multifaceted functions of TGFβ in carcinogenesis and development

    Buffered memory: a hypothesis for the maintenance of functional, virus-specific CD8(+) T cells during cytomegalovirus infection.

    Get PDF
    Chronic infections have been a major topic of investigation in recent years, but the mechanisms that dictate whether or not a pathogen is successfully controlled are incompletely understood. Cytomegalovirus (CMV) is a herpesvirus that establishes a persistent infection in the majority of people in the world. Like other herpesviruses, CMV is well controlled by an effective immune response and induces little, if any, pathology in healthy individuals. However, controlling CMV requires continuous immune surveillance, and thus, CMV is a significant cause of morbidity and death in immune-compromised individuals. T cells in particular play an important role in controlling CMV and both CD4(+) and CD8(+) CMV-specific T cells are essential. These virus-specific T cells persist in exceptionally large numbers during the infection, traffic into peripheral tissues and remain functional, making CMV an attractive vaccine vector for driving CMV-like T cell responses against recombinant antigens of choice. However, the mechanisms by which these T cells persist and differentiate while remaining functional are still poorly understood, and we have no means to promote their development in immune-compromised patients at risk for CMV disease. In this review, I will briefly summarize our current knowledge of CMV-specific CD8(+) T cells and propose a mechanism that may explain their maintenance and preservation of function during chronic infection
    corecore