5,455 research outputs found

    Ferrofluids as thermal ratchets

    Full text link
    Colloidal suspensions of ferromagnetic nano-particles, so-called ferrofluids, are shown to be suitable systems to demonstrate and investigate thermal ratchet behavior: By rectifying thermal fluctuations, angular momentum is transferred to a resting ferrofluid from an oscillating magnetic field without net rotating component. Via viscous coupling the noise driven rotation of the microscopic ferromagnetic grains is transmitted to the carrier liquid to yield a macroscopic torque. For a simple setup we analyze the rotation of the ferrofluid theoretically and show that the results are compatible with the outcome of a simple demonstration experiment.Comment: 4 pages, 3 figures, corrected version, improved figures, to be published in Phys. Rev. Let

    Signatures of the correlation hole in total and partial cross sections

    Full text link
    In a complex scattering system with few open channels, say a quantum dot with leads, the correlation properties of the poles of the scattering matrix are most directly related to the internal dynamics of the system. We may ask how to extract these properties from an analysis of cross sections. In general this is very difficult, if we leave the domain of isolated resonances. We propose to consider the cross correlation function of two different elastic or total cross sections. For these we can show numerically and to some extent also analytically a significant dependence on the correlations between the scattering poles. The difference between uncorrelated and strongly correlated poles is clearly visible, even for strongly overlapping resonances.Comment: 25 pages, 13 Postscript figures, typos corrected and references adde

    Efficient Blue Phosphorescence in Gold(I)‐Acetylide Functionalized Coinage Metal Bis(amidinate) Complexes

    Get PDF
    The synthesis of linear symmetric ethynyl‐ and acetylide‐amidinates of the coinage metals is presented. Starting with the desilylation of the complexes [{Me3_{3}SiC≡CC(NDipp)2_{2}}2_{2}M2_{2}] (Dipp=2,6‐diisopropylphenyl) (M=Cu, Au) it is demonstrated that this compound class is suitable to serve as a versatile metalloligand. Deprotonation with n‐butyllithium and subsequent salt metathesis reactions yield symmetric tetranuclear gold(I) acetylide complexes of the form [{(PPh3_{3})AuC≡CC(NDipp)2_{2}}2_{2}M2_{2}] (M=Cu, Au). The corresponding Ag complex [{(PPh3_{3})AuC≡CC(NDipp)2_{2}}2_{2}Ag2_{2}] was obtained by a different route via metal rearrangement. All compounds show bright blue or blue‐green microsecond long phosphorescence in the solid state, hence their photophysical properties were thoroughly investigated in a temperature range of 20–295 K. Emission quantum yields of up to 41 % at room temperature were determined. Furthermore, similar emissions with quantum yields of 15 % were observed for the two most brightly luminescent complexes in thf solution

    Subharmonic bifurcation cascade of pattern oscillations caused by winding number increasing entrainment

    Full text link
    Convection structures in binary fluid mixtures are investigated for positive Soret coupling in the driving regime where solutal and thermal contributions to the buoyancy forces compete. Bifurcation properties of stable and unstable stationary square, roll, and crossroll (CR) structures and the oscillatory competition between rolls and squares are determined numerically as a function of fluid parameters. A novel type of subharmonic bifurcation cascade (SC) where the oscillation period grows in integer steps as n(2π)/(ω)n (2\pi)/(\omega) is found and elucidated to be an entrainment process.Comment: 7 pages, 4 figure

    Exclusive Production of Higgs Bosons in Hadron Colliders

    Full text link
    We study the exclusive, double--diffractive production of the Standard Model Higgs particle in hadronic collisions at LHC and FNAL (upgraded) energies. Such a mechanism would provide an exceptionally clean signal for experimental detection in which the usual penalty for triggering on the rare decays of the Higgs could be avoided. In addition, because of the color singlet nature of the hard interaction, factorization is expected to be preserved, allowing the cross--section to be related to similar hard--diffractive events at HERA. Starting from a Fock state expansion in perturbative QCD, we obtain an estimate for the cross section in terms of the gluon structure functions squared of the colliding hadrons. Unfortunately, our estimates yield a production rate well below what is likely to be experimentally feasible.Comment: 17 pages, RevTeX file, four uufiled PostScript figures. UMPP #94-177. (Revised version. Some mistakenly missing Feynman diagrams are now added. Results do not change qualitatively. Paper reorganized.

    Influence of through-flow on linear pattern formation properties in binary mixture convection

    Full text link
    We investigate how a horizontal plane Poiseuille shear flow changes linear convection properties in binary fluid layers heated from below. The full linear field equations are solved with a shooting method for realistic top and bottom boundary conditions. Through-flow induced changes of the bifurcation thresholds (stability boundaries) for different types of convective solutions are deter- mined in the control parameter space spanned by Rayleigh number, Soret coupling (positive as well as negative), and through-flow Reynolds number. We elucidate the through-flow induced lifting of the Hopf symmetry degeneracy of left and right traveling waves in mixtures with negative Soret coupling. Finally we determine with a saddle point analysis of the complex dispersion relation of the field equations over the complex wave number plane the borders between absolute and convective instabilities for different types of perturbations in comparison with the appropriate Ginzburg-Landau amplitude equation approximation. PACS:47.20.-k,47.20.Bp, 47.15.-x,47.54.+rComment: 19 pages, 15 Postscript figure

    The unusual electronic structure of the "pseudo-ladder" compound CaCu2O3

    Full text link
    Experimental and theoretical studies of the unoccupied electronic structure of CaCu2O3 single crystals have been performed using polarization-dependent x-ray absorption spectroscopy and band structure calculations. The measured hole distribution shows an unusual large number of holes in orbitals parallel to the interlayer direction which is in agreement with the theoretical analysis. CaCu2O3 deviates significantly from the standard pd-sigma cuprate picture. The corresponding strong interlayer exchange is responsible for the missing spin gap generic for other two-leg ladder cuprates.Comment: 4 pages, 3 figures include

    Amplitude measurements of Faraday waves

    Full text link
    A light reflection technique is used to measure quantitatively the surface elevation of Faraday waves. The performed measurements cover a wide parameter range of driving frequencies and sample viscosities. In the capillary wave regime the bifurcation diagrams exhibit a frequency independent scaling proportional to the wavelength. We also provide numerical simulations of the full Navier-Stokes equations, which are in quantitative agreement up to supercritical drive amplitudes of 20%. The validity of an existing perturbation analysis is found to be limited to 2.5% overcriticaly.Comment: 7 figure

    Nonequilibrium phase transitions induced by multiplicative noise: effects of self-correlation

    Full text link
    A recently introduced lattice model, describing an extended system which exhibits a reentrant (symmetry-breaking, second-order) noise-induced nonequilibrium phase transition, is studied under the assumption that the multiplicative noise leading to the transition is colored. Within an effective Markovian approximation and a mean-field scheme it is found that when the self-correlation time of the noise is different from zero, the transition is also reentrant with respect to the spatial coupling D. In other words, at variance with what one expects for equilibrium phase transitions, a large enough value of D favors disorder. Moreover, except for a small region in the parameter subspace determined by the noise intensity and D, an increase in the self-correlation time usually preventsthe formation of an ordered state. These effects are supported by numerical simulations.Comment: 15 pages. 9 figures. To appear in Phys.Rev.
    • 

    corecore