10 research outputs found

    Derivation of endothelial colony forming cells from human cord blood and embryonic stem cells

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Endothelial Colony Forming Cells (ECFCs) are highly proliferative endothelial progenitor cells with clonal proliferative potential and in vivo vessel forming ability. While endothelial cells have been derived from human induced pluripotent stem cells (hiPS) or human embryonic stem cells (hES), they are not highly proliferative and require ectopic expression of a TGFβ inhibitor to restrict plasticity. Neuropilin-1 (NRP-1) has been reported to identify the emergence of endothelial precursor cells from human and mouse ES cells undergoing endothelial differentiation. However, the protocol used in that study was not well defined, used uncharacterized neuronal induction reagents in the culture medium, and failed to fully characterize the endothelial cells derived. We hypothesize that NRP-1 expression is critical for the emergence of stable endothelial cells with ECFC properties from hES cells. We developed a novel serum and feeder free defined endothelial differentiation protocol to induce stable endothelial cells possessing cells with cord blood ECFC-like properties from hES cells. We have shown that Day 12 hES cell-derived endothelial cells express the endothelial markers CD31+ NRP-1+, exhibit high proliferative potential at a single cell level, and display robust in vivo vessel forming ability similar to that of cord blood-derived ECFCs. The efficient production of the ECFCs from hES cells is 6 logs higher with this protocol than any previously published method. These results demonstrate progress towards differentiating ECFC from hES and may provide patients with stable autologous cells capable of repairing injured, dysfunctional, or senescent vasculature if these findings can be repeated with hiPS

    Differentiation of human pluripotent stem cells to cells similar to cord-blood endothelial colony-forming cells

    Get PDF
    The ability to differentiate human pluripotent stem cells into endothelial cells with properties of cord-blood endothelial colony–forming cells (CB-ECFCs) may enable the derivation of clinically relevant numbers of highly proliferative blood vessel–forming cells to restore endothelial function in patients with vascular disease. We describe a protocol to convert human induced pluripotent stem cells (hiPSCs) or embryonic stem cells (hESCs) into cells similar to CB-ECFCs at an efficiency of >108 ECFCs produced from each starting pluripotent stem cell. The CB-ECFC-like cells display a stable endothelial phenotype with high clonal proliferative potential and the capacity to form human vessels in mice and to repair the ischemic mouse retina and limb, and they lack teratoma formation potential. We identify Neuropilin-1 (NRP-1)-mediated activation of KDR signaling through VEGF165 as a critical mechanism for the emergence and maintenance of CB-ECFC-like cells

    Research Portfolio Analysis in Science Policy: Moving from Financial Returns to Societal Benefits

    No full text
    corecore