152 research outputs found
Reducible means and reducible inequalities
It is well-known that if a real valued function acting on a convex set
satisfies the -variable Jensen inequality, for some natural number , then, for all , it fulfills the -variable Jensen
inequality as well. In other words, the arithmetic mean and the Jensen
inequality (as a convexity property) are both reducible. Motivated by this
phenomenon, we investigate this property concerning more general means and
convexity notions. We introduce a wide class of means which generalize the
well-known means for arbitrary linear spaces and enjoy a so-called reducibility
property. Finally, we give a sufficient condition for the reducibility of the
-convexity property of functions and also for H\"older--Minkowski type
inequalities
Generalized Cauchy means
Given two means M and N, the operator MM,NMM,N assigning to a given mean μ the mean MM,N(μ)(x,y)=M(μ(x,N(x,y)),μ(N(x,y),y)) was defined in Berrone and Moro (Aequationes Math 60:1–14, 2000) in connection with Cauchy means: the Cauchy mean generated by the pair f, g of continuous and strictly monotonic functions is the unique solution μ to the fixed point equation MA(f),A(g)(μ)=μ, where A(f) and A(g) are the quasiarithmetic means respectively generated by f and g. In this article, the operator MM,NMM,N is studied under less restrictive conditions and a general fixed point theorem is derived from an explicit formula for the iterates MnM,NMM,Nn . The concept of class of generalized Cauchy means associated to a given family of mixing pairs of means is introduced and some distinguished families of pairs are presented. The question of equality in these classes of means remains a challenging open problem.Fil: Berrone, Lucio Renato. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
On Kedlaya type inequalities for weighted means
In 2016 we proved that for every symmetric, repetition invariant and Jensen
concave mean the Kedlaya-type inequality holds for an
arbitrary ( stands for the arithmetic mean). We are going
to prove the weighted counterpart of this inequality. More precisely, if
is a vector with corresponding (non-normalized) weights
and denotes the weighted mean then, under
analogous conditions on , the inequality holds for every and such that the sequence
is decreasing.Comment: J. Inequal. Appl. (2018
On the invariance equation for two-variable weighted nonsymmetric Bajraktarevi\'c means
The purpose of this paper is to investigate the invariance of the arithmetic
mean with respect to two weighted Bajraktarevi\'c means, i.e., to solve the
functional equation where are unknown continuous
functions such that are nowhere zero on , the ratio functions ,
are strictly monotone on , and are constants
different from each other. By the main result of this paper, the solutions of
the above invariance equation can be expressed either in terms of hyperbolic
functions or in terms of trigonometric functions and an additional weight
function. For the necessity part of this result, we will assume that
are four times continuously differentiable
Asymptotic stability of the Cauchy and Jensen functional equations
The aim of this note is to investigate the asymptotic stability behaviour of
the Cauchy and Jensen functional equations. Our main results show that if these
equations hold for large arguments with small error, then they are also valid
everywhere with a new error term which is a constant multiple of the original
error term. As consequences, we also obtain results of hyperstability character
for these two functional equations
Some functional equations related to the characterizations of information measures and their stability
The main purpose of this paper is to investigate the stability problem of
some functional equations that appear in the characterization problem of
information measures.Comment: 36 pages. arXiv admin note: text overlap with arXiv:1307.0657,
arXiv:1307.0631, arXiv:1307.0664, arXiv:1307.065
Estimation of interdomain flexibility of N-terminus of factor H using residual dipolar couplings
Characterization of segmental flexibility is needed to understand the biological mechanisms of the very large category of functionally diverse proteins, exemplified by the regulators of complement activation, that consist of numerous compact modules or domains linked by short, potentially flexible, sequences of amino acid residues. The use of NMR-derived residual dipolar couplings (RDCs), in magnetically aligned media, to evaluate interdomain motion is established but only for two-domain proteins. We focused on the three N-terminal domains (called CCPs or SCRs) of the important complement regulator, human factor H (i.e. FH1-3). These domains cooperate to facilitate cleavage of the key complement activation-specific protein fragment, C3b, forming iC3b that no longer participates in the complement cascade. We refined a three-dimensional solution structure of recombinant FH1-3 based on nuclear Overhauser effects and RDCs. We then employed a rudimentary series of RDC datasets, collected in media containing magnetically aligned bicelles (disk-like particles formed from phospholipids) under three different conditions, to estimate interdomain motions. This circumvents a requirement of previous approaches for technically difficult collection of five independent RDC datasets. More than 80% of conformers of this predominantly extended three-domain molecule exhibit flexions of < 40 °. Such segmental flexibility (together with the local dynamics of the hypervariable loop within domain 3), could facilitate recognition of C3b via initial anchoring and eventual reorganization of modules to the conformation captured in the previously solved crystal structure of a C3b:FH1-4 complex
- …