5,668 research outputs found

    Stability of Matter in Magnetic Fields

    Full text link
    In the presence of arbitrarily large magnetic fields, matter composed of electrons and nuclei was known to be unstable if α\alpha or ZZ is too large. Here we prove that matter {\it is stable\/} if α<0.06\alpha<0.06 and Zα2<0.04Z\alpha^2<0.04.Comment: 10 pages, LaTe

    Stability and Instability of Relativistic Electrons in Classical Electro magnetic Fields

    Full text link
    The stability of matter composed of electrons and static nuclei is investigated for a relativistic dynamics for the electrons given by a suitably projected Dirac operator and with Coulomb interactions. In addition there is an arbitrary classical magnetic field of finite energy. Despite the previously known facts that ordinary nonrelativistic matter with magnetic fields, or relativistic matter without magnetic fields is already unstable when the fine structure constant, is too large it is noteworthy that the combination of the two is still stable provided the projection onto the positive energy states of the Dirac operator, which defines the electron, is chosen properly. A good choice is to include the magnetic field in the definition. A bad choice, which always leads to instability, is the usual one in which the positive energy states are defined by the free Dirac operator. Both assertions are proved here.Comment: LaTeX fil

    Ground State Asymptotics of a Dilute, Rotating Gas

    Full text link
    We investigate the ground state properties of a gas of interacting particles confined in an external potential in three dimensions and subject to rotation around an axis of symmetry. We consider the so-called Gross-Pitaevskii (GP) limit of a dilute gas. Analyzing both the absolute and the bosonic ground state of the system we show, in particular, their different behavior for a certain range of parameters. This parameter range is determined by the question whether the rotational symmetry in the minimizer of the GP functional is broken or not. For the absolute ground state, we prove that in the GP limit a modified GP functional depending on density matrices correctly describes the energy and reduced density matrices, independent of symmetry breaking. For the bosonic ground state this holds true if and only if the symmetry is unbroken.Comment: LaTeX2e, 37 page

    Stability of Relativistic Matter With Magnetic Fields

    Full text link
    Stability of matter with Coulomb forces has been proved for non-relativistic dynamics, including arbitrarily large magnetic fields, and for relativistic dynamics without magnetic fields. In both cases stability requires that the fine structure constant alpha be not too large. It was unclear what would happen for both relativistic dynamics and magnetic fields, or even how to formulate the problem clearly. We show that the use of the Dirac operator allows both effects, provided the filled negative energy `sea' is defined properly. The use of the free Dirac operator to define the negative levels leads to catastrophe for any alpha, but the use of the Dirac operator with magnetic field leads to stability.Comment: This is an announcement of the work in cond-mat/9610195 (LaTeX

    On the maximal ionization of atoms in strong magnetic fields

    Full text link
    We give upper bounds for the number of spin 1/2 particles that can be bound to a nucleus of charge Z in the presence of a magnetic field B, including the spin-field coupling. We use Lieb's strategy, which is known to yield N_c<2Z+1 for magnetic fields that go to zero at infinity, ignoring the spin-field interaction. For particles with fermionic statistics in a homogeneous magnetic field our upper bound has an additional term of order Z×min(B/Z3)2/5,1+ln(B/Z3)2Z\times\min{(B/Z^3)^{2/5},1+|\ln(B/Z^3)|^2}.Comment: LaTeX2e, 8 page

    The Flux-Phase of the Half-Filled Band

    Full text link
    The conjecture is verified that the optimum, energy minimizing magnetic flux for a half-filled band of electrons hopping on a planar, bipartite graph is π\pi per square plaquette. We require {\it only} that the graph has periodicity in one direction and the result includes the hexagonal lattice (with flux 0 per hexagon) as a special case. The theorem goes beyond previous conjectures in several ways: (1) It does not assume, a-priori, that all plaquettes have the same flux (as in Hofstadter's model); (2) A Hubbard type on-site interaction of any sign, as well as certain longer range interactions, can be included; (3) The conclusion holds for positive temperature as well as the ground state; (4) The results hold in D2D \geq 2 dimensions if there is periodicity in D1D-1 directions (e.g., the cubic lattice has the lowest energy if there is flux π\pi in each square face).Comment: 9 pages, EHL14/Aug/9

    Some properties of frustrated spin systems: extensions and applications of Lieb-Schupp approach

    Full text link
    Lieb and Schupp have obtained, using certain version of ``spin-reflection positivity'' method, a number of ground-state properties for frustrated Heisenberg models. One group of these results is related to singlet nature of ground state and it needs an assumption of reflection symmetry present in the system. In this paper, it is shown that the result holds also for other symmetries (inversion etc.). The second Lieb-Schupp result is relation between ground-state energies of certain systems. In the paper, this relation is applied to multidimensional models on various lattices.Comment: 15 pages, 8 eps figures, revtex

    On the flux phase conjecture at half-filling: an improved proof

    Get PDF
    We present a simplification of Lieb's proof of the flux phase conjecture for interacting fermion systems -- such as the Hubbard model --, at half filling on a general class of graphs. The main ingredient is a procedure which transforms a class of fermionic Hamiltonians into reflection positive form. The method can also be applied to other problems, which we briefly illustrate with two examples concerning the tVt-V model and an extended Falicov-Kimball model.Comment: 23 pages, Latex, uses epsf.sty to include 3 eps figures, to appear in J. Stat. Phys., Dec. 199

    A Fresh Look at Entropy and the Second Law of Thermodynamics

    Full text link
    This paper is a non-technical, informal presentation of our theory of the second law of thermodynamics as a law that is independent of statistical mechanics and that is derivable solely from certain simple assumptions about adiabatic processes for macroscopic systems. It is not necessary to assume a-priori concepts such as "heat", "hot and cold", "temperature". These are derivable from entropy, whose existence we derive from the basic assumptions. See cond-mat/9708200 and math-ph/9805005.Comment: LaTex file. To appear in the April 2000 issue of PHYSICS TODA

    The TF Limit for Rapidly Rotating Bose Gases in Anharmonic Traps

    Full text link
    Starting from the full many body Hamiltonian we derive the leading order energy and density asymptotics for the ground state of a dilute, rotating Bose gas in an anharmonic trap in the ` Thomas Fermi' (TF) limit when the Gross-Pitaevskii coupling parameter and/or the rotation velocity tend to infinity. Although the many-body wave function is expected to have a complicated phase, the leading order contribution to the energy can be computed by minimizing a simple functional of the density alone
    corecore