565 research outputs found

    Direct observation of domain wall structures in curved permalloy wires containing an antinotch

    Get PDF
    The formation and field response of head-to-head domain walls in curved permalloy wires, fabricated to contain a single antinotch, have been investigated using Lorentz microscopy. High spatial resolution maps of the vector induction distribution in domain walls close to the antinotch have been derived and compared with micromagnetic simulations. In wires of 10 nm thickness the walls are typically of a modified asymmetric transverse wall type. Their response to applied fields tangential to the wire at the antinotch location was studied. The way the wall structure changes depends on whether the field moves the wall away from or further into the notch. Higher fields are needed and much more distorted wall structures are observed in the latter case, indicating that the antinotch acts as an energy barrier for the domain wal

    Process evaluation of a multicomponent dyadic intervention study with exercise and support for people with dementia and their family caregivers

    Get PDF
    BACKGROUND: A randomized controlled trial of a multicomponent dyadic intervention (a translated and adapted version of an intervention that has been shown to be effective for people with dementia in the USA) was performed. The exercise and support intervention was intended to reduce depressive symptoms of people with dementia and their caregivers. The purpose of this process evaluation is to create in-depth insight into the delivery of the intervention and the effect analysis, to prevent drawing inappropriate conclusions on the efficacy or effectiveness of the intervention, and to formulate recommendations for future studies on complex geriatric interventions. METHODS: Qualitative and quantitative data were collected. The process evaluation was performed according to the model presented by Reelick and colleagues, which encompasses the following three process components: (1) success rate of recruitment and quality of the study population; (2) the quality of execution of the complex intervention; and (3) the process of acquisition of the data. RESULTS: The study design met high research standards and the intervention was carefully delivered. Evaluation of the study population quality revealed a profound recruitment process resulting in a reasonable sample size. Attrition rate during follow-up was acceptable. With regard to the evaluation of the intervention quality, most interviewed participants experienced benefits of the intervention. Attendance at the home visits was high and attrition to homework was moderate. Evaluation of the data acquisition showed the positive value of the use of a mixed design; qualitative analysis of the intervention revealed outcomes not measured in the quantitative analysis. CONCLUSIONS: The process evaluation revealed a carefully and soundly performed study. The mixed design contributed to valuable insights. However, there were some restrictions worth considering. The intervention components may have a different feasibility by moderate attrition to homework and some negative experiences of participants, which may be an indication of too intensive an intervention for this frail population in this specific country. As a result, the results of the statistical effect analysis should be interpreted with caution. TRIAL REGISTRATION: The study has been registered at the Netherlands National Trial Register: NTR1802, registration date 6 May 2009

    Multiple Transitions to Chaos in a Damped Parametrically Forced Pendulum

    Full text link
    We study bifurcations associated with stability of the lowest stationary point (SP) of a damped parametrically forced pendulum by varying ω0\omega_0 (the natural frequency of the pendulum) and AA (the amplitude of the external driving force). As AA is increased, the SP will restabilize after its instability, destabilize again, and so {\it ad infinitum} for any given ω0\omega_0. Its destabilizations (restabilizations) occur via alternating supercritical (subcritical) period-doubling bifurcations (PDB's) and pitchfork bifurcations, except the first destabilization at which a supercritical or subcritical bifurcation takes place depending on the value of ω0\omega_0. For each case of the supercritical destabilizations, an infinite sequence of PDB's follows and leads to chaos. Consequently, an infinite series of period-doubling transitions to chaos appears with increasing AA. The critical behaviors at the transition points are also discussed.Comment: 20 pages + 7 figures (available upon request), RevTex 3.

    Magnetic domain-wall motion by propagating spin waves

    Full text link
    We found by micromagnetic simulations that the motion of a transverse wall (TW) type domain wall in magnetic thin-film nanostripes can be manipulated via interaction with spin waves (SWs) propagating through the TW. The velocity of the TW motion can be controlled by changes of the frequency and amplitude of the propagating SWs. Moreover, the TW motion is efficiently driven by specific SW frequencies that coincide with the resonant frequencies of the local modes existing inside the TW structure. The use of propagating SWs, whose frequencies are tuned to those of the intrinsic TW modes, is an alternative approach for controlling TW motion in nanostripes

    Direct current control of three magnon scattering processes in spin-valve nanocontacts

    Full text link
    We have investigated the generation of spin waves in the free layer of an extended spin-valve structure with a nano-scaled point contact driven by both microwave and direct electric current using Brillouin light scattering microscopy. Simultaneously with the directly excited spin waves, strong nonlinear effects are observed, namely the generation of eigenmodes with integer multiple frequencies (2 \emph{f}, 3 \emph{f}, 4 \emph{f}) and modes with non-integer factors (0.5 \emph{f}, 1.5 \emph{f}) with respect to the excitation frequency \emph{f}. The origin of these nonlinear modes is traced back to three magnon scattering processes. The direct current influence on the generation of the fundamental mode at frequency \emph{f} can be related to the spin-transfer torque, while the efficiency of three-magnon-scattering processes is controlled by the Oersted field as an additional effect of the direct current

    Interpreting gaps: a geoarchaeological point of view on the Gravettian record of Ach and Lone valleys (Swabian Jura, SW Germany)

    Get PDF
    Unlike other Upper Paleolithic industries, Gravettian assemblages from the Swabian Jura are documented solely in the Ach Valley (35-30 Kcal BP). On the other hand, traces of contemporaneous occupations in the nearby Lone Valley are sparse. It is debated whether this gap is due to a phase of human depopulation, or taphonomic issues related with landscape changes. In this paper we present ERT, EC-logging and GPR data showing that in both Ach and Lone valleys sediments and archaeological materials eroded from caves and deposited above river incisions after 37-32 Kcal BP. We argued that the rate of cave erosion was higher after phases of downcutting, when hillside erosion was more intensive. To investigate on the causes responsible for the dearth of Gravettian materials in the Lone Valley we test two alternative hypotheses: i) Gravettian humans occupied less intensively this part of the Swabian Jura. ii) Erosion of cave deposits did not occur at the same time in the two valleys. We conclude that the second hypothesis is most likely. Ages from the Lone Valley show increasing multimillennial gaps between 36 and 18 Kcal BP, while a similar gap is present in the Ach Valley between 28 and 16 Kcal BP. Based on geoarchaeological data from previous studies and presented in this paper, we interpreted these gaps in radiocarbon data as indicating of cave erosion. Furthermore, we argued that the time difference across the two valleys show that the erosion of cave deposits began and terminated earlier in the Lone Valley, resulting in a more intensive removal of Gravettian-aged deposits. The hypothesis that cave erosion was triggered by regional landscape changes seems to be supported by geochronological data from the Danube Valley, which show that terrace formation at the end of the Pleistocene moved westwards throughout southern Germany with a time lag of few millennia.PTDC/HAR-ARQ/27833/2017info:eu-repo/semantics/publishedVersio

    A spin-wave frequency doubler by domain wall oscillation

    Full text link
    We present a new mechanism for spin-wave excitation using a pinned domain wall which is forced to oscillate at its eigenfrequency and radiates spin waves. The domain wall acts as a frequency doubler, as the excited spin waves have twice the frequency of the domain wall oscillation. The investigations have been carried out using micromagnetic simulations and enable the determination of the main characteristics of the excited spin-waves such as frequency, wavelength, and velocity. This behavior is understood by the oscillation in the perpendicular magnetization which shows two anti-nodes oscillating out of phase with respect to each other.Comment: 8 pages, 3 figure

    Parameterized Complexity of Maximum Edge Colorable Subgraph

    Full text link
    A graph HH is {\em pp-edge colorable} if there is a coloring ψ:E(H)→{1,2,
,p}\psi: E(H) \rightarrow \{1,2,\dots,p\}, such that for distinct uv,vw∈E(H)uv, vw \in E(H), we have ψ(uv)≠ψ(vw)\psi(uv) \neq \psi(vw). The {\sc Maximum Edge-Colorable Subgraph} problem takes as input a graph GG and integers ll and pp, and the objective is to find a subgraph HH of GG and a pp-edge-coloring of HH, such that ∣E(H)âˆŁâ‰„l|E(H)| \geq l. We study the above problem from the viewpoint of Parameterized Complexity. We obtain \FPT\ algorithms when parameterized by: (1)(1) the vertex cover number of GG, by using {\sc Integer Linear Programming}, and (2)(2) ll, a randomized algorithm via a reduction to \textsc{Rainbow Matching}, and a deterministic algorithm by using color coding, and divide and color. With respect to the parameters p+kp+k, where kk is one of the following: (1)(1) the solution size, ll, (2)(2) the vertex cover number of GG, and (3)(3) l - {\mm}(G), where {\mm}(G) is the size of a maximum matching in GG; we show that the (decision version of the) problem admits a kernel with O(k⋅p)\mathcal{O}(k \cdot p) vertices. Furthermore, we show that there is no kernel of size O(k1−ϔ⋅f(p))\mathcal{O}(k^{1-\epsilon} \cdot f(p)), for any Ï”>0\epsilon > 0 and computable function ff, unless \NP \subseteq \CONPpoly

    The First Space-Based Gravitational-Wave Detectors

    Get PDF
    Gravitational waves provide a laboratory for general relativity and a window to energetic astrophysical phenomena invisible with electromagnetic radiation. Several terrestrial detectors are currently under construction, and a space-based interferometer is envisioned for launch early next century to detect test-mass motions induced by waves of relatively short wavelength. Very-long-wavelength gravitational waves can be detected using the plasma in the early Universe as test masses; the motion induced in the plasma by a wave is imprinted onto the cosmic microwave background (CMB). While the signature of gravitational waves on the CMB temperature fluctuations is not unique, the polarization pattern can be used to unambiguously detect gravitational radiation. Thus, forthcoming CMB polarization experiments, such as MAP and Planck, will be the first space-based gravitational-wave detectors.Comment: 5 pages, 3 postscript figure

    On the computation of zone and double zone diagrams

    Full text link
    Classical objects in computational geometry are defined by explicit relations. Several years ago the pioneering works of T. Asano, J. Matousek and T. Tokuyama introduced "implicit computational geometry", in which the geometric objects are defined by implicit relations involving sets. An important member in this family is called "a zone diagram". The implicit nature of zone diagrams implies, as already observed in the original works, that their computation is a challenging task. In a continuous setting this task has been addressed (briefly) only by these authors in the Euclidean plane with point sites. We discuss the possibility to compute zone diagrams in a wide class of spaces and also shed new light on their computation in the original setting. The class of spaces, which is introduced here, includes, in particular, Euclidean spheres and finite dimensional strictly convex normed spaces. Sites of a general form are allowed and it is shown that a generalization of the iterative method suggested by Asano, Matousek and Tokuyama converges to a double zone diagram, another implicit geometric object whose existence is known in general. Occasionally a zone diagram can be obtained from this procedure. The actual (approximate) computation of the iterations is based on a simple algorithm which enables the approximate computation of Voronoi diagrams in a general setting. Our analysis also yields a few byproducts of independent interest, such as certain topological properties of Voronoi cells (e.g., that in the considered setting their boundaries cannot be "fat").Comment: Very slight improvements (mainly correction of a few typos); add DOI; Ref [51] points to a freely available computer application which implements the algorithms; to appear in Discrete & Computational Geometry (available online
    • 

    corecore