640 research outputs found

    Formation of corner waves in the wake of a partially submerged bluff body

    Get PDF
    We study theoretically and numerically the downstream flow near the corner of a bluff body partially submerged at a deadrise depth Δh into a uniform stream of velocity U, in the presence of gravity, g. When the Froude number, Fr=U/√gΔh, is large, a three-dimensional steady plunging wave, which is referred to as a corner wave, forms near the corner, developing downstream in a similar way to a two-dimensional plunging wave evolving in time. We have performed an asymptotic analysis of the flow near this corner to describe the wave's initial evolution and to clarify the physical mechanism that leads to its formation. Using the two-dimensions-plus-time approximation, the problem reduces to one similar to dam-break flow with a wet bed in front of the dam. The analysis shows that, at leading order, the problem admits a self-similar formulation when the size of the wave is small compared with the height difference Δh. The essential feature of the self-similar solution is the formation of a mushroom-shaped jet from which two smaller lateral jets stem. However, numerical simulations show that this self-similar solution is questionable from the physical point of view, as the two lateral jets plunge onto the free surface, leading to a self-intersecting flow. The physical mechanism leading to the formation of the mushroom-shaped structure is discussed

    Elevated immune gene expression is associated with poor reproductive success of urban blue tits

    Get PDF
    Urban and forest habitats differ in many aspects that can lead to modifications of the immune system of wild animals. Altered parasite communities, pollution, and artificial light at night in cities have been associated with exacerbated inflammatory responses, with possibly negative fitness consequences, but few data are available from free-living animals. Here, we investigate how urbanization affects major immune pathways and experimentally test potentially contributing factors in blue tits (Cyanistes caeruleus) from an urban and forest site. We first compared breeding adults by quantifying the mRNA transcript levels of proteins associated with anti-bacterial, anti-malarial (TLR4, LY86) and anti-helminthic (Type 2 transcription factor GATA3) immune responses. Adult urban and forest blue tits differed in gene expression, with significantly increased TLR4 and GATA3, but not LY86, in the city. We then experimentally tested whether these differences were environmentally induced by cross-fostering eggs between the sites and measuring mRNA transcripts in nestlings. The populations differed in reduced reproductive success, with a lower fledging success and lower fledgling weight recorded at the urban site. This mirrors the findings of our twin study reporting that the urban site was severely resource limited when compared to the forest. Because of low urban survival, robust gene expression data were only obtained from nestlings reared in the forest. Transcript levels in these nestlings showed no (TLR4, LY86), or weak (GATA3), differences according to their origin from forest or city nests, suggesting little genetic or maternal contribution to nestling immune transcript levels. Lastly, to investigate differences in parasite pressure between urban and forest sites, we measured the prevalence of malaria in adult and nestling blood. Prevalence was invariably high across environments and not associated with the transcript levels of the studied immune genes. Our results support the hypothesis that inflammatory pathways are activated in an urban environment and suggest that these differences are most likely induced by environmental factors

    Considerations on bubble fragmentation models

    Get PDF
    n this paper we describe the restrictions that the probability density function (p.d.f.) of the size of particles resulting from the rupture of a drop or bubble must satisfy. Using conservation of volume, we show that when a particle of diameter, D0, breaks into exactly two fragments of sizes D and D2 = (D30−D3)1/3 respectively, the resulting p.d.f., f(D; D0), must satisfy a symmetry relation given by D22 f(D; D0) = D2 f(D2; D0), which does not depend on the nature of the underlying fragmentation process. In general, for an arbitrary number of resulting particles, m(D0), we determine that the daughter p.d.f. should satisfy the conservation of volume condition given by m(D0) ∫0D0 (D/D0)3 f(D; D0) dD = 1. A detailed analysis of some contemporary fragmentation models shows that they may not exhibit the required conservation of volume condition if they are not adequately formulated. Furthermore, we also analyse several models proposed in the literature for the breakup frequency of drops or bubbles based on different principles, g(Ï”, D0). Although, most of the models are formulated in terms of the particle size D0 and the dissipation rate of turbulent kinetic energy, Ï”, and apparently provide different results, we show here that they are nearly identical when expressed in dimensionless form in terms of the Weber number, g*(Wet) = g(Ï”, D0) D2/30 ϔ−1/3, with Wet ~ ρ Ï”2/3 D05/3/σ, where ρ is the density of the continuous phase and σ the surface tension

    Three-dimensional instability and vorticity patterns in the wake of a flat plate

    No full text
    International audienceWe investigated experimentally the dynamics of the three-dimensional secondary instability developing in the wake of a thin flat plate at moderate Reynolds numbers. The wake is formed as the two laminar boundary layers developing on each side merge at the trailing edge of the flat plate. Both the spatial and temporal evolution of the two- and three-dimensional instabilities are analysed by means of laser-induced visualizations of the deformation of the interface separating the two streams. It was found that although the wake may exhibit two distinct three-dimensional modes with different symmetry characteristics, Modes 1 and 2 (Lasheras & Meiburg 1990), the latter appears to be amplified first, thereafter dominating the evolution of the near wake. By varying the forcing frequency of the primary two-dimensional instability, we found that the wavelength of the three-dimensional mode is selected by the wavelength of the two-dimensional Karman vortices, with a ratio (lambda(3D)/lambda(2D)) of order one. In the far-wake region, both modes appear to grow and co-exist. Furthermore, by analysing the response of the wake to spanwise-periodic and impulsive perturbations applied at the trailing edge of the plate, we demonstrate that the nature of the secondary instability of the wake behind a thin flat plate is convective. In addition, both modes are shown to have comparable wavelengths and to be the result of the same instability mechanism

    A Collimation Experiment with Protons at 120 GeV

    Get PDF
    We present the preliminary results of a two-stage collimation experiment made with a 120 GeV coasting proton beam in the SPS at CERN

    Three-dimensional stability of periodic arrays of counter-rotating vortices

    No full text
    International audienceWe study the temporally developing three-dimensional stability of a row of counter-rotating vortices defined by the exact solution of Euler's equations proposed by Mallier and Maslowe [Phys. Fluids 5, 1074 (1993)]. On the basis of the symmetries of the base state, the instability modes are classified into two types, symmetric and anti-symmetric. We show that the row is unstable to two-dimensional symmetric perturbations leading to the formation of a staggered array of counter-rotating vortices. For long wavelengths, the anti-symmetric mode is shown to exhibit a maximum amplification rate at small wave numbers whose wavelengths scale mainly with the period of the row. This mode could be interpreted as due to the Crow-type of instability extended to the case of a periodic array of vortices. For short wavelengths, symmetric and anti-symmetric instability modes are shown to have comparable growth rates, and the shorter the wavelength, the more complex the structure of the eigenmode. We show that this short wavelength dynamic is due to the elliptic instability of the base flow vortices, and is well modeled by the asymptotic theory of Tsai and Widnall. The effect of varying the Reynolds number was also found to agree with theoretical predictions based on the elliptic instability. © 2002 American Institute of Physics

    Optimising piezoelectric and magnetoelectric responses on CoFe2O4/P(VDF-TrFE) nanocomposites

    Get PDF
    Magnetoelectric nanocomposite films composed of magnetostrictive CoFe2O4 nanoparticles with sizes between 35 and 55 nm embedded in P(VDF-TrFE) have been successfully prepared by a solvent casting method. The ferroelectric, piezoelectric, magnetic and magnetoelectric properties of the nanocomposite and their variation with the wt% of the ferrite filler, thickness of the composite and direction of the applied magnetic field have been investigated. Ferroelectric and piezoelectric properties are improved when small amount of ferrite nanoparticles were added to the polymeric matrix. Magnetic properties vary linearity with ferrite content. The highest magnetoelectric response of 41.3 mV/cmOe was found in the composite with 72wt% when a 2.5 kOe DC field was transversely applied to the sample surface. This value is among the highest reported in two phase particulate polymer nanocomposites. Thickness of the composite has no influence in the magnetoelectric response, allowing tailoring sensor thickness for specific applications. The good value of the magnetoelectric coefficient and the flexibility of the films make these composites suitable for applications in magnetoelectric smart devices.Fundação para a CiĂȘncia e a Tecnologia (FCT) (PTDC/CTM/69316/2006), (SFRH/BD/45265/2008).FEDER “Programa Operacional Factores de Competitividade – COMPETE” (NANO/NMed-SD/0156/2007)Basque Government Industry Department - Project Actimat (ETORTEK-IE10-272)COST Action MP1003, 2010 - The „European Scientific Network for Artificial Muscles‟ (ESNAM)

    Cascade Simulations for the LHC Betatron Cleaning Insertion

    Get PDF
    A cascade calculation is done in the IR7 betatron cleaning insertion of LHC. It uses a detailed map of the primary losses and an accurate model of the straight section. One aim is to design a compact shielding which fits in the tight section of the tunnel. The same study allows to define radiation hardness properties of the equipment to be installed in the section and to locate areas of low activi ty for the installation of sensitive equipment

    Determination of lanthanides in fossil samples using laser induced breakdown spectroscopy

    Get PDF
    As being a fast, simple and relatively non-destructive analytical technique Laser-induced breakdown spectroscopy (LIBS) has a large variety of applications including the analysis of paleontological samples. In this work LIBS is employed for the quantitative determination of lanthanides (Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Sm, Tb, Tm and Yb) in vertebrate fossil samples comprising teeth, disarticulated complete or fragmented bones, eggshell fragments, and coprolites of dinosaurs, mammals and crocodiles. For emission line data, standard AnalaR grade salts of lanthanides were used. The major components: Iron, calcium, magnesium, silicon and aluminum in the samples were also determined. The analytical information may be helpful in studying the samples for their age, formation environment and other paleontological properties
    • 

    corecore