82 research outputs found

    Synthesis of fluorosugar reagents for the construction of well-defined fluoroglycoproteins.

    Get PDF
    2-Deoxy-2-fluoroglycosyl iodides are privileged glycosyl donors for the stereoselective preparation of 1-Nu-β-fluorosugars, which are useful reagents for chemical site-selective protein glycosylation. Ready access to such β-fluorosugars enables the mild and efficient construction of well-defined fluoroglycoproteins.We thank the European Commission (Marie Curie CIG, O.B. and G.J.L.B.), MICINN, Spain (Juan de la Cierva Fellowship, O.B.), MINECO, Spain (CTQ2011-22872BQU) and Generalitat de Catalunya (M.S.) for generous financial support. We also thank Mr. Adrià Cardona-Benages (URV) for technical assis-tance. G.J.L.B. thanks the Royal Society (University Research Fellowship), Fundação para a Ciência a Tecnologia, Portugal (FCT Investigator), and the EPSRC for funding.This is the final version of the article. It first appeared from ACS via http://pubs.acs.org/doi/abs/10.1021/acs.orglett.5b01259

    Zinc Coordination Is Required for and Regulates Transcription Activation by Epstein-Barr Nuclear Antigen 1

    Get PDF
    Epstein-Barr Nuclear Antigen 1 (EBNA1) is essential for Epstein-Barr virus to immortalize naĂŻve B-cells. Upon binding a cluster of 20 cognate binding-sites termed the family of repeats, EBNA1 transactivates promoters for EBV genes that are required for immortalization. A small domain, termed UR1, that is 25 amino-acids in length, has been identified previously as essential for EBNA1 to activate transcription. In this study, we have elucidated how UR1 contributes to EBNA1's ability to transactivate. We show that zinc is necessary for EBNA1 to activate transcription, and that UR1 coordinates zinc through a pair of essential cysteines contained within it. UR1 dimerizes upon coordinating zinc, indicating that EBNA1 contains a second dimerization interface in its amino-terminus. There is a strong correlation between UR1-mediated dimerization and EBNA1's ability to transactivate cooperatively. Point mutants of EBNA1 that disrupt zinc coordination also prevent self-association, and do not activate transcription cooperatively. Further, we demonstrate that UR1 acts as a molecular sensor that regulates the ability of EBNA1 to activate transcription in response to changes in redox and oxygen partial pressure (pO2). Mild oxidative stress mimicking such environmental changes decreases EBNA1-dependent transcription in a lymphoblastoid cell-line. Coincident with a reduction in EBNA1-dependent transcription, reductions are observed in EBNA2 and LMP1 protein levels. Although these changes do not affect LCL survival, treated cells accumulate in G0/G1. These findings are discussed in the context of EBV latency in body compartments that differ strikingly in their pO2 and redox potential

    Synthesis and Reactivity of beta,gamma-Dihalogenated Unsaturated Acids: Application to the Synthesis of 4-Substituted 5H-Furan-2-ones

    No full text
    International audiencebeta,gamma-Dihalogenated unsaturated acids were prepared regio- and stereoselectively from allenic acid, and some aspects of their reactivities were studied

    Novel ENU-induced point mutation in scavenger receptor class B, member 1, results in liver specific loss of SCARB1 protein.

    Get PDF
    Cardiovascular disease (CVD) is the largest cause of premature death in human populations throughout the world. Circulating plasma lipid levels, specifically high levels of LDL or low levels of HDL, are predictive of susceptibility to CVD. The scavenger receptor class B member 1 (SCARB1) is the primary receptor for the selective uptake of HDL cholesterol by liver and steroidogenic tissues. Hepatic SCARB1 influences plasma HDL-cholesterol levels and is vital for reverse cholesterol transport. Here we describe the mapping of a novel N-ethyl-N-nitrosourea (ENU) induced point mutation in the Scarb1 gene identified in a C57BL/6J background. The mutation is located in a highly conserved amino acid in the extracellular loop and leads to the conversion of an isoleucine to an asparagine (I179N). Homozygous mutant mice express normal Scarb1 mRNA levels and are fertile. SCARB1 protein levels are markedly reduced in liver (approximately 90%), but not in steroidogenic tissues. This leads to approximately 70% increased plasma HDL levels due to reduced HDL cholesteryl ester selective uptake. Pdzk1 knockout mice have liver-specific reduction of SCARB1 protein as does this mutant; however, in vitro analysis of the mutation indicates that the regulation of SCARB1 protein in this mutant is independent of PDZK1. This new Scarb1 model may help further our understanding of post-translational and tissue-specific regulation of SCARB1 that may aid the important clinical goal of raising functional HDL

    Oxytocin and estrogen promote rapid formation of functional GABA synapses in the adult supraoptic nucleus

    No full text
    We here investigated inhibitory synapse turnover in the adult brain using the hypothalamic supraoptic nucleus where new synapses form during different physiological conditions, in particular on oxytocin neurons largely controlled by GABAergic inputs and locally released oxytocin. Patch clamp recordings and ultrastructural analysis of the nucleus in acute slices from late gestating rats showed that oxytocin and estrogen promoted rapid formation of inhibitory synapses. Thus, after 2-h exposure to a combination of oxytocin and 17-β estradiol, the frequency of miniature inhibitory postsynaptic currents was significantly enhanced. Since their amplitude and presynaptic GABA release probability were unmodified, this indicated an increased number of synapses. Electron microscopy confirmed increased densities of symmetric, putative GABAergic synapses within 2-h exposure to the peptide or steroid, effects which were reversible and oxytocin receptor mediated. Our observations thus offer direct evidence that hypothalamic GABAergic microcircuitries can undergo rapid and functional remodeling under changing neuroendocrine conditions. © 2006 Elsevier Inc. All rights reserved
    • …
    corecore