67 research outputs found

    Does Size Matter? Economies Of Scale In The Banking Industry

    Get PDF
    This study uses 2007 data from more than 1,200 banking institutions to examine the relationships among size, costs, and profitability in the banking industry.  Our results suggest that the relationship between size and firm performance is complex.  We find that while costs decline and profitability increases as bank size increases, these relationships do not hold indefinitely and diseconomies of scale are experienced by larger banks.  When size is measured by total assets, larger banks begin to encounter lower levels of net income, but the very largest banks are able to enjoy net income that increases at an increasing rate as size increases.  When size is measured by total deposits, net income increases at an increasing rate for a wide range of bank sizes and only begins to decrease for the largest banks.  Regardless of the size measure employed, we find that increasing size is associated with higher costs that increase at an increasing rate, inevitably resulting in diseconomies of scale with implications for both theory and practice

    Factors Influencing Motion Picture Success: Empirical Review And Update

    Get PDF
    This paper investigates the factors associated with the success of creative products and services, focusing specifically on motion pictures.  The study offers a comprehensive examination of the factors influencing motion picture box office success, including quality and other product attributes, as well as marketing expenditures and film distribution patterns.  Based on a thorough review of the literature, a model is developed and tested using a sample of 439 movies.  Results suggest that the following factors are positively associated with motion picture success: quality, whether a movie is a sequel, marketing expenditures, the number of opening screens, and a favorable release date.  Implications of these findings for both theory and management are suggested

    Why whales are big but not bigger : physiological drivers and ecological limits in the age of ocean giants

    Get PDF
    This research was funded in part by grants from the National Science Foundation (IOS-1656676, IOS-1656656; OPP-1644209 and 07-39483), the Office of Naval Research (N000141612477), and a Terman Fellowship from Stanford University. All procedures in USA were conducted under approval of the National Marine Fisheries Service (Permits 781-1824, 16163, 14809, 16111, 19116, 15271, 20430), Canada DFO SARA/MML 2010-01/SARA-106B, National Marine Sanctuaries (MULTI-2017-007), Antarctic Conservation Act (2009-014, 2015-011) and institutional IACUC committee protocols. Fieldwork, data collection and data processing for M. densirostris were funded by the Office of Naval Research grants N00014-07-10988, N00014-07-11023, N00014-08-10990, N00014-18-1-2062, and 00014-15-1-2553, and the U.S. Strategic Environmental Research and Development Program Grant SI-1539. PLT gratefully acknowledges funding from funding the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland). MASTS is funded by the Scottish Funding Council (HR09011) and contributing institutions.The largest animals are marine filter feeders, but the underlying mechanism of their large size remains unexplained. We measured feeding performance and prey quality to demonstrate how whale gigantism is driven by the interplay of prey abundance and harvesting mechanisms that increase prey capture rates and energy intake. The foraging efficiency of toothed whales that feed on single prey is constrained by the abundance of large prey, whereas filter-feeding baleen whales seasonally exploit vast swarms of small prey at high efficiencies. Given temporally and spatially aggregated prey, filter feeding provides an evolutionary pathway to extremes in body size that are not available to lineages that must feed on one prey at a time. Maximum size in filter feeders is likely constrained by prey availability across space and time.PostprintPeer reviewe

    Diving Behavior and Fine-Scale Kinematics of Free-Ranging Risso's Dolphins Foraging in Shallow and Deep-Water Habitats

    Get PDF
    Air-breathing marine predators must balance the conflicting demands of oxygen conservation during breath-hold and the cost of diving and locomotion to capture prey. However, it remains poorly understood how predators modulate foraging performance when feeding at different depths and in response to changes in prey distribution and type. Here, we used high-resolution multi-sensor tags attached to Risso's dolphins (Grampus griseus) and concurrent prey surveys to quantify their foraging performance over a range of depths and prey types. Dolphins (N = 33) foraged in shallow and deep habitats [seabed depths less or more than 560 m, respectively] and within the deep habitat, in vertically stratified prey features occurring at several aggregation levels. Generalized linear mixed-effects models indicated that dive kinematics were driven by foraging depth rather than habitat. Bottom-phase duration and number of buzzes (attempts to capture prey) per dive increased with depth. In deep dives, dolphins were gliding for >50% of descent and adopted higher pitch angles both during descent and ascents, which was likely to reduce energetic cost of longer transits. This lower cost of transit was counteracted by the record of highest vertical swim speeds, rolling maneuvers and stroke rates at depth, together with a 4-fold increase in the inter-buzz interval (IBI), suggesting higher costs of pursuing, and handling prey compared to shallow-water feeding. In spite of the increased capture effort at depth, dolphins managed to keep their estimated overall metabolic rate comparable across dive types. This indicates that adjustments in swimming modes may enable energy balance in deeper dives. If we think of the surface as a central place where divers return to breathe, our data match predictions that central place foragers should increase the number and likely quality of prey items at greater distances. These dolphins forage efficiently from near-shore benthic communities to depth-stratified scattering layers, enabling them to maximize their fitness

    Mother knows best: occurrence and associations of resighted humpback whales suggest maternally derived fidelity to a southern hemisphere coastal feeding ground

    Get PDF
    Site fidelity is common among migratory cetaceans, including humpback whales (Megaptera novaeangliae). In the Northern Hemisphere it has been found that fidelity to humpback whale feeding grounds is transferred maternally but this has never been shown for the species in the Southern Hemisphere. We examined this in a unique feeding area off west South Africa using resighting data of 68 individually identified humpback whales by means of photographic (tail flukes and dorsal fins) and/or molecular methods (microsatellite genotyping) over an 18 year span. We found short-term association patterns and recurrent visits typical of other feeding grounds. Males and females had different seasonality of attendance. Significant female-dominated presence corresponded to timing of an expected influx of females on their southward migration from the breeding ground: firstly non-nursing (possibly pregnant) females in mid-spring, and mothers and calves in mid-to late summer. The potential benefit of this mid-latitude feeding area for females is illustrated by a record of a cow with known age of at least 23 years that produced calves in three consecutive years, each of which survived to at least six months of age: the first record of successful post-partum ovulation for this species in the Southern Hemisphere. We recorded association of a weaned calf with its mother, and a recurring association between a non-lactating female and male over more than two years. Moreover, three animals first identified as calves returned to the same area in subsequent years, sometimes on the same day as their mothers. This, together with numerous Parent-Offspring relations detected genetically among and between resighted and non-resighted whales is strongly suggestive of maternally derived site fidelity at a small spatial scale by a small sub-population of humpback whales.National Research Foundation (NRF), South Africa [2047517]; PADI Project AWARE (UK) [095]; Earthwatch Institute (project title "Whales of South Africa"
    • …
    corecore