39,468 research outputs found

    Contemporary splinting practice in the UK for adults with neurological dysfunction: A cross-sectional survey

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund.Aim: To explore the contemporary splinting practice of UK occupational therapists and physiotherapists for adults with neurological dysfunction. Method: Cross-sectional online survey of members of the Association of Chartered Physiotherapists in Neurology and College of Occupational Therapists Specialist Section Neurological Practice. Results: Four hundred and twenty therapists completed the survey. Contracture management is the most common rationale for therapists splinting adults with neurological dysfunction. Other shared therapeutic goals of splinting include maintaining muscle and joint alignment, spasticity management, function, pain management and control of oedema. Considerable clinical uncertainty was uncovered in practice particularly around wearing regimens of splints. Most therapists have access to locally-derived splinting guidelines, which may contribute to this diversity of practice. Conclusions: This study provides a unique insight into aspects of contemporary splinting practice among UK therapists, who belong to a specialist neurological professional network and work in a number of different health-care settings with adults who have a neurological condition. Study findings show a wide variation in splinting practice, thereby indicating a potential need for national guidance to assist therapists in this area of clinical uncertainty. Further research is required to establish best practice parameters for splinting in neurological rehabilitation

    Parametric Competition in non-autonomous Hamiltonian Systems

    Full text link
    In this work we use the formalism of chord functions (\emph{i.e.} characteristic functions) to analytically solve quadratic non-autonomous Hamiltonians coupled to a reservoir composed by an infinity set of oscillators, with Gaussian initial state. We analytically obtain a solution for the characteristic function under dissipation, and therefore for the determinant of the covariance matrix and the von Neumann entropy, where the latter is the physical quantity of interest. We study in details two examples that are known to show dynamical squeezing and instability effects: the inverted harmonic oscillator and an oscillator with time dependent frequency. We show that it will appear in both cases a clear competition between instability and dissipation. If the dissipation is small when compared to the instability, the squeezing generation is dominant and one can see an increasing in the von Neumann entropy. When the dissipation is large enough, the dynamical squeezing generation in one of the quadratures is retained, thence the growth in the von Neumann entropy is contained

    Crystallization, data collection and data processing of maltose-binding protein (MalE) from the phytopathogen Xanthomonas axonopodis pv. citri

    Get PDF
    Maltose-binding protein is the periplasmic component of the ABC transporter responsible for the uptake of maltose/maltodextrins. The Xanthomonas axonopodis pv. citri maltose-binding protein MalE has been crystallized at 293 Kusing the hanging-drop vapour-diffusion method. The crystal belonged to the primitive hexagonal space group P6_122, with unit-cell parameters a = 123.59, b = 123.59, c = 304.20 Å, and contained two molecules in the asymetric unit. It diffracted to 2.24 Å resolution

    Detectability of the First Cosmic Explosions

    Full text link
    We present a fully self-consistent simulation of a synthetic survey of the furthermost cosmic explosions. The appearance of the first generation of stars (Population III) in the Universe represents a critical point during cosmic evolution, signaling the end of the dark ages, a period of absence of light sources. Despite their importance, there is no confirmed detection of Population III stars so far. A fraction of these primordial stars are expected to die as pair-instability supernovae (PISNe), and should be bright enough to be observed up to a few hundred million years after the big bang. While the quest for Population III stars continues, detailed theoretical models and computer simulations serve as a testbed for their observability. With the upcoming near-infrared missions, estimates of the feasibility of detecting PISNe are not only timely but imperative. To address this problem, we combine state-of-the-art cosmological and radiative simulations into a complete and self-consistent framework, which includes detailed features of the observational process. We show that a dedicated observational strategy using 8\lesssim 8 per cent of total allocation time of the James Webb Space Telescope mission can provide us up to 915\sim 9-15 detectable PISNe per year.Comment: 9 pages, 8 figures. Minor corrections added to match published versio

    Characterization in bi-parameter space of a non-ideal oscillator

    Get PDF
    The authors thank scientific agencies CAPES, CNPq (112952/2015-1), and FAPESP (2011/ 19269-11). M. S. Baptista also thanks EPSRC (EP/I03 2606/1).Peer reviewedPostprin
    corecore