7,464 research outputs found

    The sudden approximation applied to molecular problems. I - Non-reactive collisions

    Get PDF
    Sudden approximation for calculating transition probabilities for energy transfer during collisions between molecules and atom

    Pattern recognition- iv. sequential operations in digital picture processing

    Get PDF
    Sequential approach to digital picture processin

    Correlation energy of two-electron systems

    Get PDF
    Correlation energy of two-electron system

    Pattern recognition. v- samp - a computer program for estimating surface area from contour maps

    Get PDF
    Fortran computer program for computing linear approximation of surface area for any given portion of digitized contour ma

    Dynamics of a self-gravitating shell of matter

    Full text link
    Dynamics of a self-gravitating shell of matter is derived from the Hilbert variational principle and then described as an (infinite dimensional, constrained) Hamiltonian system. A method used here enables us to define singular Riemann tensor of a non-continuous connection {\em via} standard formulae of differential geometry, with derivatives understood in the sense of distributions. Bianchi identities for the singular curvature are proved. They match the conservation laws for the singular energy-momentum tensor of matter. Rosenfed-Belinfante and Noether theorems are proved to be still valid in case of these singular objects. Assumption about continuity of the four-dimensional spacetime metric is widely discussed.Comment: publishe

    Three-dimensional incompressible Navier-Stokes computations of internal flows

    Get PDF
    Several incompressible Navier-Stokes solution methods for obtaining steady and unsteady solutions are discussed. Special attention is given to internal flows which involve distinctly different features from external flows. The characterisitcs of the flow solvers employing the method of pseudocompressibility and a fractional step method are briefly described. This discussion is limited to a primitive variable formulation in generalized curvilinear coordinates. Computed results include simple test cases and internal flow in the Space Shuttle main engine hot-gas manifold

    Lattice density-functional theory of surface melting: the effect of a square-gradient correction

    Full text link
    I use the method of classical density-functional theory in the weighted-density approximation of Tarazona to investigate the phase diagram and the interface structure of a two-dimensional lattice-gas model with three phases -- vapour, liquid, and triangular solid. While a straightforward mean-field treatment of the interparticle attraction is unable to give a stable liquid phase, the correct phase diagram is obtained when including a suitably chosen square-gradient term in the system grand potential. Taken this theory for granted, I further examine the structure of the solid-vapour interface as the triple point is approached from low temperature. Surprisingly, a novel phase (rather than the liquid) is found to grow at the interface, exhibiting an unusually long modulation along the interface normal. The conventional surface-melting behaviour is recovered only by artificially restricting the symmetries being available to the density field.Comment: 16 pages, 6 figure

    Potential applications of computational fluid dynamics to biofluid analysis

    Get PDF
    Computational fluid dynamics was developed to the stage where it has become an indispensable part of aerospace research and design. In view of advances made in aerospace applications, the computational approach can be used for biofluid mechanics research. Several flow simulation methods developed for aerospace problems are briefly discussed for potential applications to biofluids, especially to blood flow analysis

    Noether symmetries, energy-momentum tensors and conformal invariance in classical field theory

    Full text link
    In the framework of classical field theory, we first review the Noether theory of symmetries, with simple rederivations of its essential results, with special emphasis given to the Noether identities for gauge theories. Will this baggage on board, we next discuss in detail, for Poincar\'e invariant theories in flat spacetime, the differences between the Belinfante energy-momentum tensor and a family of Hilbert energy-momentum tensors. All these tensors coincide on shell but they split their duties in the following sense: Belinfante's tensor is the one to use in order to obtain the generators of Poincar\'e symmetries and it is a basic ingredient of the generators of other eventual spacetime symmetries which may happen to exist. Instead, Hilbert tensors are the means to test whether a theory contains other spacetime symmetries beyond Poincar\'e. We discuss at length the case of scale and conformal symmetry, of which we give some examples. We show, for Poincar\'e invariant Lagrangians, that the realization of scale invariance selects a unique Hilbert tensor which allows for an easy test as to whether conformal invariance is also realized. Finally we make some basic remarks on metric generally covariant theories and classical field theory in a fixed curved bakground.Comment: 31 pa
    • …
    corecore