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1. Introduction

Computer programs for processing digitized pictorial
information have received increasing attention in recent
years. Much of the work done in this field has involved
performing "local" operations on picture "neighborhoods."
As several investigators have shown, a wide variety of
picture processing transformations can be accomplished
by applying such operations independently, or "in parallel",
to each element of the given picture.

This paper suggests that local operations performed

on picture elements taken in a definite sequence, using

at each step the results obtained by operating on the
preceding elements in the sequence, may be preferable to
the '"parallel" approach in some cases. It is shown that
the parallel and sequential approaches are mathematically
equivalent, and that the latter should be competitive in
processing time required if a sequential computer is used.

"Sequential" local operations for performing two
basic picture transformations are next described. The
first of these labels the connected components of any
given picture subset, while the second determines the
"distance" (in a certain sense) from every picture ele-
ment to the nearest element of a given subset. 1In connec-
tion with the latter transformation, a "skeleton" subset
is defined which can be used in place of the given subset
to generate the same transformed picture by applying the
"reverse" local operations sequentially. Examples of
the outputs of sequential computer programs which per-
form these transformations are given.

In the concluding sections of this paper, various
applications of these basic picture transformations to

the analysis of picture subsets are indicated. Programs



are described which construct the graphs corresponding
to dissections of a picture into regions, and which deter-
mine the orders of connectivity of the multiply connected
regions. Two approaches to the discrimination of elongated
from non-elongated regions or parts of regions using the
"distance"” transformation are presented, one of them in-
volving components of the skeleton subset.

The research described in this paper was supported
in part by National Aeronautics and Space Administration
Grant NsG-398 to the University of Maryland. The assist-
ance of Mr. David Wilson, who made several significant
contributions to the development of the "distance" trans-
formation program, is gratefully acknowledged. Early
versions of both this and the connected component pro-
gram were developed by the senior author and his colleagues
at the Budd Information Sciences Center, McLean, Va., with
the partial support of NASA under Contract NAS5-3461 with
The Budd Company. This initial work was accomplished
through the efforts of Mr. James N. Orton of Budd, with
the assistance of Messrs. Ernest W. Smith and Bernard

Altschuler.



2. Sequential and parallel neighborhood operations

2.1. Operations on digitized pictures

A digitized picture, for the purposes of this
discussion, is a finite rectangular array of "points"
or "elements", each of which has associated with it one
of a discrete finite set of "values." If the array has
m rows and n columns, any "point" in it is specified
by a pair of numbers i, j (1=i=m, 1=jsn) denoting its
row and column. The picture can thus be represented
as an m by n matrix in which each entry aij has one of

£5

the "values," say ViresesV In practice, m and n may

be of the order of 23 to 2 and k may range from 2l to

210.

By an operation on a digitized picture is meant a
function which transforms a given picture matrix into
another one. A general function of this type has mn
numerical arguments (one for each position in the matrix),
and is correspondingly difficult to handle computationally.
For practical purposes, it is desirable to work with
operations on digitized pictures which can be defined in
terms of functions having considerably fewer arguments.

By a local operation or neighborhood operation on

a picture is meant a function which defines a value for
each element in the transformed picture in terms of the
values of the corresponding element and a small set of
its neighbors in the given picture. For example, such
operations can be defined using a neighborhood which
consists of the given element and its eight immediate
neighbors; an operation of this type has only nine argu-

ments and is of the form



* =
ai.j f(ai-l,j—l'ai-l,j'ai-l,j+l'ai,j-l’ai,j,

35,5417 2i+1,§-1"%i+1, 9" 2i+1, 341)

In what follows we shall consider only operations of this
type.*

Local operations can be used not only to generate
transforms of a given picture, but also to define dis-
tinguished subsets of the picture. For example, one

can define a picture as having a certain local property

at a given point if the values of the point and its
neighbors satisfy certain conditions (all the same,
half the same and the rest different, etc.). Given any
such local property, one can always define a local
operation which assigns (say) the value 1 to points
which have the property, and the value 0 to points
which do not have it. This local operation is in effect
the characteristic function of the set of points which
have the property. The transformed picture which it
produces can be used to select the points of the original
picture which have the property by taking the logical
"and” of the original and the transform.

As the last remark suggests, one can also consider
local operations which involve more than one picture

at a time. However, from a formal standpoint no gain

*The function f is not defined for "border" picture ele-
ments which do not have all eight neighbors. To avoid
such exceptions, one can "augment" the picture matrix
by adding a zeroth row and column, an m+lst row and an
n+lst column, giving these fictitious elements a value
which do not occur in the "real"” picture array, and
defining the function appropriately when some of its
arguments have this value. Alternatively, one can add
to the definition of f the phrase "for whichever of
these elements is defined."



in generality results from this. 1In fact, suppose that
one has two pictures (aij)' (bij) of the same dimensions

I

(m by n), with element values vl,...vr and ul,...u
respectively; one can then define a new m by n picture

(c..) of the form
1]

1378 1, 51 e i, 341 7P, o1 P, )

However, any such (cij) can always be defined using local
operations on a single picture. For example, consider

b

the m by n picture (Aij), where Aij=2aij3 i3; 1let wz(n),

¢3(n) be the highest powers of 2 and 3 which divide n,

respectively, where n is any integer. Then
c;y=E(Log, (9, Ay g 5y ))eeeil09y (0 (By 0y 44q))s

logy(og(A; 4 5 g M) ve-ilogyloy (B, by 5. y))

is the result of applying a local operation to (Aij)'



2.2. Parallel operations

Many useful transformations of a given picture
can be achieved by performing a single local operation,
or at most a few of them in succession, on each point
of the picture. For example, a "noisy" picture can
often be effectively "smoothed," or an "unsharp" picture
"enhanced, " by a single neighborhood operation which
takes a local average or computes a finite - difference
Laplacian. Similarly, a picture which contains thick
"roads" ("lines" or "curves" of points having given
values) can be "thinned" by iterating a "border element
deletion" operation, perhaps alternated with a smoothing
operation, where the number of iterations required is
relatively small since the roads are narrow compared to
the picture size. Transformations of these types have
been demonstrated by Dinneen [17], Kirsch [2], Unger [37,
Narasimhan [4] and others. These operations can also
be used to define picture subsets consisting of points
which have "smooth" or "broken" neighborhoods, lie on
"edges" or '"roads," etc.

Each of the local operations used in the examples
just given is performed independently on every point

)

of the picture. The arguments (ai-l,j—l""’ai+l,j+l
are always the original picture matrix values; the

new values aij=f(a. ) are stored, but

i-1,3-177" " %41, 41
are not used until the operation has been performed for
every (i,j), when they then become arguments for the

next operation (if any). Since the sequence in which the
points are processed is thus entirely irrelevant, the
operation can be thought of as being performed "in parallel,"
simultaneously for every picture point. Extensive consider-

ation has in fact been given to the design of computers



which actually do perform identical operations simultane-
ously on each of a large number of stored quantities.
Even when processing digitized pictures on conventional
sequential computers, many investigators have used pro-
grams which simulate the operation of such "parallel"
machines.

The wide variety of picture transformations which
can be performed using local operations applied in
parallel has given rise to the widespread belief that
this approach is optimum for local picture processing
in general. This paper makes the countersuggestion
that an alternative type of processing, in which se-
quential application of local operations plays a
crucial role, is equally general in scope, and may
even have significant advantages, particularly when
processing is being done on a sequential computer.

The concept of a sequentially applied neighborhood
operation will now be defined, and the relative merits

of the parallel and sequential approaches considered.



2.3. Sequential operations

Suppose that a local operation is applied to the
points of a digitized picture in some definite sequence.
For simplicity, suppose that the points are processed
row by row beginning at the upper left - that is, in the

sequence a see.d

11212 In'@ppree rBypreces@ queeeid o
Unlike the cases described in Section 2.2, however, sup-
pose that as soon as a point is processed, its new

value rather than the original value is used in processing
and succeeding points which have it as neighbor. 1If

this is done, the general form of the operation becomes

* = * * * *
af,y7fely, i, 33k, 5o, -1 2, 5

25,941 2441, 5-1"3541, 5 2441, 540 ¢
since points (i-1,j-1), (i-1,3j), (i-1,3+41) and (i,3j-1)
have already been processed, while the remaining points

have not yet been processed. Such an operation will be

called sequential.

At first glance, this type of operation seems more
complex, and hence presumably less basic, than the "parallel"
type, which uniformly uses "old" values until the entire
picture has been processed. However, it is easily shown
that the two types of operation are entirely equivalent

in the sense of the following

Theorem. Any picture transformation that can be accom-

plished by a series of parallel local operations can also
be accomplished by a series of sequential local operations,

and conversely.
A proof of this Theorem is given in Appendix A.

In the proof, it is shown that any parallel local

operation is equivalent to just two sequential local
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operations; but a general sequential local operation is
matched only by a sequence of 2mn(m+n-l) parallel local
Operations. It is possible, of course, that this figure
is not a minimum even in the general case. 1In fact,
one can often obtain the result of a sequential operation
using relatively few parallel operations which produce
the result without following the stepwise progress of the
sequential operation. However, it at least appears plausible
that there exist picture transformations which are more
efficiently performed using sequentially applied operations.
To make this comparison more explicit, suppose that
it takes time T to perform a single local operation. A
sequential computer can then perform such an operation
in the neighborhood of every element of an m by n picture
in time mnT; there should be essentially no difference
between the cases in which the operation is performed "in
parallel” (that is, using old element values at every
step) or "sequentially" (using new values insofar as
avaliable). Let F be a picture transformation which
can be performed by a single sequentially applied local
operation, but which requires 2mn(m+n-1) local operations
in parallel. Then the sequential computer can perform
F "sequentially" in time mnT, but requires time 2m2n2(m+n—l)T
to perform it "in parallel." Furthermore, suppose given
a parallel computer which can perform a local operation
in time T on every picture neighborhood simultaneously.
Even this computer requires time 2mn(m+n-1)T to perform F
"in parallel," so that the sequential computer can still
perform it "sequentially" in less time.
The figures just given should by no means be inter-
preted as implying that sequential computers are generally

faster than parallel computers at performing picture pro-
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cessing tasks. These figures apply only to an operation
which cannot be performed except by processing the picture
element by element in sequence. Many operations, even
if they have very simple definitions in terms of such
sequential processing, can also be accomplished in other
ways. For example, the distance transformation defined
in Section 4 requires just two sequentially applied
local operations, involving a total of 2mn individual
operations on picture element neighborhoods, or a pro-
cessing time of 2mnT. On the other hand, it is easily
shown that this transformation can also be accomplished

by applying the local operation

f(a. .)= min(a

i, i-1,3"3i+1,5°34,§-1%4, 340 2

m+n times to every picture element. If this non-sequen-
tial procedure is carried out on a sequential computer,
mn(m+n) individual local operations must be performed;
this is (m+n)/2 times as many as needed for the method
of Section 4, with a processing time of mn(m+n)T. How-
ever, if a parallel computer is available, the required
processing time is only (m+n)T, a saving by a factor of
2mn/ (m+n). Thus if m=n, parallel processing on a parallel
computer is n times faster than sequential processing on
a sequential computer; but this in turn is n times faster
than "parallel" processing on a sequential computer

even when this efficient parallel method of performing

the transformation is used.
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3. Sequential operations for connected component dis-
crimination

This section describes a set of sequentially applied
local operations which "labels" the connected components
of any given picture subset. For simplicity, it is
assumed that the given subset consists of picture ele-
ments which have value 0, while every other element has
value 1. The results can be immediately extended to
subsets consisting of elements which have any given pro-
perty; it suffices to first transform the picture using

the characteristic function of the complementary property.
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3.1. Connectivity

A subset of a digitized picture will be called
connected if for any two points P and Q of the subset
there exists a sequen i = .o =

equence of points P PO'Pl’Pz’ ’Pn-l'Pn Q

such that Pi is a neighbor of Pi l=i=n. 1In Figure la,

the set of shaded points and the iet of unshaded points
are both connected; in Figure lb, the shaded points are
connected but the unshaded points are not; in Figure lc,
the unshaded points are connected but the shaded points
are not. For these examples, the definition agrees with
the intuitive concept of connectivity. On the other
hand, both the shaded and unshaded points in Figure 14
are connected, which runs counter to intuition. This
results from the fact that a point is connected to any
of its eight neighbors, including the diagonal ones.
If connectivity were redefined to require that Pi be one
of the four horizontal and vertical neighbors of Pi—l’
both the shaded and unshaded points in Figure 1 would
become disconnected, which is still not consistent
with intuition. The "paradox" of Figure 1ld can be re-
phrased as follows: If the "curve" of shaded points is
connected ("gapless"), it does not disconnect its
interior from its exterior; if it is totally disconnected,
it does disconnect them. In spite of the paradoxes as-
sociated with this neighborhood definition of connectivity,
it is still a useful concept; paradoxes arise only when
the connectivity of isolated strings of diagonally adja-
cent elements is considered.

In general, a subset of a picture (say the subset
of "O" points) consists of a number of connected parts

or components.* The problem of distinguishing among these

*Formally, these components are the equivalence classes
of picture points defined by the relation "is connected
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Figure 1. Examples of Connected and Non-connected Sets
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components will now be considered. Specifically, it is
desired to construct a transformed picture in which the
"0" points have new values VireseaV

k
each > 1), two points having the same value if and only

(positive integers

if they belong to the same connected component of "0O"
points on the original picture.

Neighborhood operations lend themselves naturally
to the study of connectivity, since it is defined in
terms of neighbors. If the operations are applied in
parallel, it is not easy to distinguish among connected
components, since the parallel operations treat every
point of the given set identically. Using sequentially
applied operations, however, one can "track" each con-
nected region, assigning a value to each point of it
as the tracking proceeds. If two of the tracked regions
merge, a special value is assigned. Further processing
is then applied to these special values so as to eliminate
redundant values from the picture.

In the next subsection a set of sequential local
operations is defined which assigns to every point of
each connected region on the picture a value which "labels"
the region. In the following subsection a computer pro-
gram is described which generally follows this sequence
of operations but which does not adhere strictly to the
requirement that only local operations are permitted, and

which in consequence is considerably more efficient.

to"” (that is: "is a neighbor of a neighbor...of a
neighbor of"), which is evidently an equivalence relation.
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3.2. Sequential operations for determining connected
components of a picture

In the discussion below, it is convenient to apply
neighborhood operations to the picture using more than
one element sequence. The following four sequences are
particularly useful:

(1) The forward raster sequence: (1,1),...,(1,n),

(2,1),...,(2,n),...,(m,1),...,(m,n) as in
Section 2.3

(2) The backward raster sequence: (m,n),...,(m,1),

(m-1,n),...(m-1,1),...,(1,n),...(1,1), the exact
reverse of (1)

(3) The forward zigzag sequence: (1,1),...,(1,n),
(2,n),...,(2,1),(3,1),...,(3,n),e..,(m,1),...,
(m,n) if m is odd;...,(m,n), ..., (m,l) if m is
even

(4) The backward zigzag sequence: The exact reverse

of (3)

We begin by defining a local operation f which,
when it is applied to the picture (ai,j) in forward raster
(or zigzag) sequence,
(a) Leaves the l's in the picture unaltered
(b) Tags each "new" 0 (that is, each 0 which has
only 1l's as predecessor neighbors#*) with a unique
label 2i3j (these values are clearly all distinct
for all 1=i=m, 1l=j=n). Such a picture element
is potentially part of a new connected component.

(c) Tags each 0 whose predecessor neighbors all have

*For the forward raster sequence, the "predecessor neighbors"

. .y . . da. . .,
of ai,j are ai—l,j—l'al—l,j al—l,j+l an al,j—l

or whichever of them exist.
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the same label with that label, indicating that
it too is part of that connected component

(d) Tags each 0 whose predecessor neighbors have
two different labels with the special label

2a3b5c7d, indicating that the two labels

2a3b and 2c3d are redundant since the two "con-
nected components" which they represent have
merged. (It will be shown below that the pre-
decessor neighbors cannot have more than two
different labels, so that cases (a-d) exhaust

all possibilities.)
Specifically, for all a, . in the picture, f(ai .) 1is

! I J
an integer of the form 2w3x5y7z, where

a) If a, j=l, then w=x=y=z=0, so that f(ai j)=l

’ 1

b) If ai,j=0' and f(ai-l,j—l)=f(a1—l,j)=f(a1 l,j+l)=
=]%
f(al,j~l) 1=*, L
then w=i, x=j, y=z=0, so that f(a; ,)=2 37

c) If a; j=0 and case (b) does not apply, but there

1
exists a pair of positive integers (a,b) such

that each of these f's is either 1 or 2a3b5h7k or

2p3q5a7b for some h,k or p,q, then w=a, x=b, y=z=0,
so that f(ai j)=2a3b

14

d) If a; j=0, and cases (b-c) do not apply, but

14

there exist two pairs of positive integers (a,b)

and (c,d) such that each of these f's is either

a
1, 233Pghsk  503dgPga  5S3tgasR . HuaVsC,d

b_c.d
then w=a, x=b, y=c, z=d, so that f(a, j)=2a3 5%7

14

*Strictly speaking, in defining f we should speak of these
four elements, rather than their f's, as being l. For

the sake of clarity, however, the definitions given in

this section describe the results of applying f in sequence,
so that when f is being applied to a, ., it has already
been applied to these four elements.
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Lemma. When f is applied to a picture in forward raster

sequence, cases (a-d) are the only possibilities.

Proof: We must show that the highest powers of 2 and 3,

5 and 7 dividing the four predecessor neighbor f's can
never be different to the point where even case (d) does
not apply. Let these f's be 2713%15Y17%21 _ o%W43¥45Y47%4,

and suppose that the Lemma is true for all elements pre-

ceding a; 5° Since a;_1 j-1 is a predecessor neighbor
of ai-l 5 one of the following possibilities must hold:
a) f(ai—l,j)=l
b) f(ai-l,j—l)=l

c)-a) WoiX, OF Y,.2, = Wi,X) or y;,2;

Similarly, since a; 4 3 is a predecessor neighbor of

a. .. ., 1f neither of their f's is 1 we must have
i-1,j+1
WoiXy OF You 2,"Wa, X3 OF Y3,247 and since ai—l,j is a

predecessor neighbor of a; if neither f is 1 we

Ij_l,
must have w2,x2 or y2,zz=w4,x4 or y4,z4. Hence if

f(ai .)#1 we can take a,b,c,d=w

-1,5 2'¥1¥5%,

c,d if y2=22=0). Furthermore, since ai-l,j—l is a pre-

decessor neighbor of a; j-1° if neither of their f's
1

' X (ignore the

is 1 we have Wy e Xy or.yl,zl=w4,x4 OF Y,12Z,- Let a,b

be the common pair, c,d=either of w3,x or y3,z to

3 3
cover the case where f(ai—l j)=l. Since the Lemma is

trivially true for a (indeed, for any a j)' this

1,1 1,

completes the proof.

The Lemma shows that the forward raster sequence
application of the function f to the picture (ai,j) is
well defined. The resulting transformed picture now has
one or more unigque labels of the form 2a3b designating

the points of each connected component, and special labels
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b_c_d . . .
57 designating points where two of

of the form 2°3
these "subcomponents" merge, indicating that one of their
labels is redundant.

It now remains to further process the picture so as
to eliminate all the redundant labels. This will be done
as follows: For each label of the form 2a3b5c7din the
picture, all 2c3d's and 5c7d's are systematically replaced
by 2a3b's. Each time this is done, the number of labels
2C3d which are redundant with other labels is reduced by
one. A sufficient number of repetitions of this process
thus eventually eliminates all redundancies, leaving just
one unique label for each connected component.

We proceed by defining two sequences of functions
fr'gr (r=1,2,...). These functions will operate as follows
on the picture:

a) Nothing is done until the first element which

shows a redundancy (i.e., which is divisible by
5) and which has not been processed by the pre-
ceding f's and g's 1is reached; let this element

be 2a3b5c7de, where 2,3,5,7 do not divide e

b) The value of this element is divided by 5C7d,
eliminating the redundant label (c,d).

c) This and all subsequent elements (in the sense of
the forward zigzag sequence) are tagged by multi-
plying their values by Mo @ product of four
primes not previously used as tags, raised to
the exponents a,b,c,d, respectively. This pro-
cedure "carries" the values a,b,c,d to all sub-
sequent points of the picture so that they can
be used for processing these points as necessary.

Whenever an element is found whose original label

involves (c,d), it is replaced by (a,b). This
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completes the application of fr to the picture.
All preceding elements (=subsequent elements in
the sense of the backward zigzag sequence) are
then processed as in step (c¢). This constitutes

the application of gr.

Specifically, fr' defined as follows, is applied to

the picture in forward zigzag sedquence:

a)

b)

c)

If ai,j is not divisible by 5, and Paril (the
4r+lst prime) does not divide any of the fr's
of its predecessor neighbors (in the sense of the

forward zigzag sequence), then fr(a. .)=a.

i,3 i,J
If a.'. is divisible by 5, and p4r+lad§ei got
divide any of these fr's, let a, .=2"37577¢€,

where 2,3,5,7 do not divide e:; then f(ai )=
a3b a b c d a b !
2 3 Ppri1Par+oPar+3Par+a (=223 m_ for short)

ivi 's, let
If p4r+l does divide one of these fr s e

a. .=2w3X5Y7ze, where 2,3,5,7 do not divide e ; then
i

’

(1) If neither (w,x) nor (y,z)=(c,d), fr(ai j)=ai 1T

. Jor
(2) 1f (w,x)=(c,d) and (y,Z)#(a,b),fr(ai'j)=
a-c.b-d
2 3 ai,jnr
(3) If (y,z)=(c,d) and (w,X)%(a,b),fr(ai'j)=
a-c7b—da

5 . LT
i,jr

(4) 1f (w,x)=(a,b) and (y.z)=(c,d), fr(ai )=

¢ ]
-c_-d
5 77 ai,jnr

(5) If (y.z)=(a,b) and (w,x)=(c,d), fr(ai,j)=

2a—c3b—d5—a7—ba
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After fr has been applied to the picture, g, defined as

follows, is then applied in backward zigzag sequence:

a) If Parsl divides éi,j’ then gr(ai,j)=ai,j

b) If p4r+l does not divide ai,j’ but does divide one
of the gr's of its predecessor neighbors in the sense
of the backward zigzag sequence, then proceed exactly
as in part (c) of the definition of fr.

Applying fl, 9, f2, EPYRRRY fmn’ Sn to the picture in-
sures that every redundancy has been eliminated, since there
cannot be more redundancies than picture elements (in fact,
there must be considerably fewer), and each (fr,gr) cycle
eliminates at least one redundancy. We have thus shown
that the desired task of tagging each connected component
of the picture with a unique label is accomplished by
the following sequence of local operations:

f in forward raster* sequence

fl in forward zigzag sequence

9 in backward zigzag sedquence

n in forward zigzag seguence

fm
Irn in backward zigzag sequence

Note that in practice the task will be completed long before
the mnth cycle, and the remaining cycles will not change the
picture at all. However, there is no easy way of detecting
the completion if only sequential local operations are per-

mitted.

*or zigzag
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3.3. Programming considerations

A practical computer program for determining con-
nected components along the lines described above need
not be as elaborate, since it need not restrict itself
to local operations alone. Some immediate shortcuts,
once other types of operations are permitted, include
the following:

a. The "redundancies" can be stored as a table
"outside" the picture; this greatly reduces
storage requirements.*

b. Elimination of redundancies can be performed
by processing this table. When this has been
done, the redundant picture element labels
can be "translated” into irredundant ones as
the very last step, by making one scan of the
picture, "looking up" each value in the pro-
cessed table and substituting the equivalent
irredundant value if different from the given
value.

c¢. The table can be processed in many fewer steps
than are required to process redundancies with-
in the picture, since (1) the table is in general
much smaller; (2) when a redundancy is being
"reduced,"”" it need not be "carried" through the
table in the form of a set of high prime powers,
since processing is not constrained to neighbor-

hoods within the table; (3) it is easy to stop

*Since auxiliary tables which contain stored information
about the picture are used in this and the following steps,
the operations performed are no longer local; the table
makes available information about picture elements which

are not neighbors of the element being processed.
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the processing when the table is exhausted,
rather than blindly repeating it mn times.

The labels used can simply be consecutive in-
tegers, 1f a count is kept outside the picture
so that no label is used twice; there is no
need to use cumbersome prime power products
indexed to the picture element coordinates to

insure unigqueness,

In the light of these simplifications, a program

for connected component determination can proceed as

follows:

(1) Apply the function f to the picture in forward

raster sequence, where

a) If a. .=1 , f(a. .)=1

i,] 1,3
b) If ai'j=0, and all of f(ai—l,j-l)’ f(ai—l,j)’
f(ai—l,j+l) and f(ai,j—l)=l’ then f(ai,j)=

the first label value not yet used
c) If a, j=0' and all of these f's which # 1

I

are the same, f(ai j)=t'hat same label value

’

d) If a; j=0, and two of these f's # 1 and are

’

different, f(ai'j)=the smaller of the two
label values. In this case the pair of label
values is stored in the first unused space

in an auxiliary table, with the smaller wvalue

first.

(2) Process the table as follows:

a) Order the pairs lexicographically (in order
of increasing first value, and for each of

these, in order of increasing second value)
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b) Let the first pair of values be A,B. Scan
the table and replace every B by an A. Store
the pair (A,B) in a second auxiliary table
(which will be used to relabel the picture
components in step (3)) and erase the first
pair

c) Reorder the remaining pairs lexicographically
and with smaller term first, erasing all pairs
whose terms are equal

d) Repeat steps (b-c) until every pair has been
processed and erased. The second table now
contains a set of pairs of the form

(AllBll) 1 (Al:Blz) 71 o0 oy (AllBl,nl) 1 (A2'B21) 7 e e oy

(A21B2'n2) 7 e e oy (A-hlBhl) 1 ¢ oy (a-hrBh,nh)
which are ordered lexicographically. The

A's in this table consist of one representative
(the smallest) from each equivalence class

of redundant values, and the Bij's (all dis-
tinct) are the remaining elements of the class

represented by Ai.

(3) Scan the picture in any sequence, comparing each
element's label value with the B's in the second
table. Replace each B in the picture by the
corresponding A. (If desired, gaps in the sequence

of labels can be "closed up" before output.)

Note that this program consists basically of a single
sequentially applied local operation (step (1), except
that the redundancies are stored outside the picture to

simplify the remaining steps), followed by sequential
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processing of the table and sequential relabeling of the
picture. The approach is still essentially sequential,
even though for simplicity the restriction to "pure"

neighborhood operations has been relaxed.

An IBM 7090/94 program along these lines has been
written and tested. The program, originally written in
the FAP symbolic assembly language, has been adapted so
that it can be called as a FORTRAN subroutine. It accepts
as input a digital picture on magnetic tape. Each record
on the tape contains information about one row of the
picture. A picture element can have any value from O to
26—1, and each row can consist of up to 2000 elements.

The number of rows is limited only by the capacity of
the tape.

The program selects any prespecified rectangular sub-
picture (rows r through r+u, columns s through s+v, for

example). It "slices" the picture element values between

t. (0=t =t <26—1), treat-

1’ "2 1772

ing all values between tl and t2 as "0" and all values

outside the range as "1". The program then proceeds to

any two prespecified levels t

label the connected components of the set of "O"s essentially
as described above. The labels used for processing are
simply the integers. For printout purposes, only the 46
distinct labels
ABCDEFGHIJKLMNOPQRSTUVWXYZ123456789+-/=".) $*, (
are used, in that order. If there are more than 46 con-
nected components, these symbols are used over and over
again, as many times as necessary. The output is a matrix

of alphanumerics in which the symbol printed at each "o
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point is the label of the connected component which con-
tains the point; "1" points are left blank. A labeled
version of the picture is also written on tape for input

to succeeding processing routines,

An example of a simple picture input to the program
is shown as Figure 2 ("l"=black, "0"=white). The corres-
ponding output for this picture is shown as Figure 3. 1In
this picture, the component labeled I, for example, had
two labels in the original processing. The redundancy of
these labels was detected when the scan reached the "I"
element which is circled on the Figure. Component D
obviously had many labels originally, while components

A and C had unique labels throughout the processing.
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Figure 2. Picture Input to Processing Programs



AAAANAAAAAAANAN e edur tuCniietody Cr oL OTU S sde Cu e w B DDDELL DUVUL UL BDDDL

AAAANAAAAAAAA slesBt LLCLuCeil T LDUOBD Ui DHLGOLURD G i
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BAEBIR Trrenett conLooo FERFANNNNENNRNNN) DODDOOVD 0DLDDDDD HHHHHHHHHHH
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8 IEILILELITINI pcoooc NNFNENNNN NN NNNNNN NN 0D0DOLODODLODDDDBLODD HHHHHR
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IITTLIInLILetIr yIInInretll  copocoopconoon ISR RREY] 00UDDO0DL KK KKK K ub HHHHHH
TUILILIIILIRILERI LIl CDOCCDDDCODD 1SS NSRRERT] DoODODODL KKKRKKK [sv]s} HItHHHHN
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PETIYTITTIIRRLIRITLEINL TLPTERNLIIILant 11111 DDDO KKKKKKK ubDD HHHH LL "
SRS RN RR RN RN RE RS TLLITITELELILL il pDDOD KKKKKKK vubD HHHN LLL
(SRR RN R SRR TIRLIILIRILIT 00ODO KKKKKKK ovubo RHHH LLet
SRR RS RRRR R RN IS RNSERRIRN] o0 00DDDD KKKKK owenon HHHH LLLLe
rrerrrerrnneennd [ LETRInIIILLR 00LDDDUWDDDOODD KKKK DDODw HHHHH LLLit
TIHITITILIEItnl c Irrreant pODDOODOODDDODO  KKKK ODLLOU HHHH LiLtL
Trrrrrnineriily oco it DODOCDDDDODODOD KKK oDuooD HHRHH Le
PITTERLILLITLINL ocoo 11l coo00DDDDLOODOOND K []ela2oDr]s) HHHHH LLLL
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o] 11 1 00Co0D £oo0000000D0DVOODODOODD opovovoo HHHHHH LLLL HH
o]0} 1 opocoooL poCooDDD0DDDODOCUDTDDDDODD DODDDLD HHHHHHH LLLtL HHR
Dot 0 DOLDDCODOEDHOCCOCOODODDDODOCO00DUDDDONVDLDLDBEODY HHHHHHHH L HHA
oot 0 DDOOBDDODDDCEOOCODCCOOLCODODDDODDDODODOCOOONVDODLDNNDD HHHHHHHH L HHHH
DCCOODCODOCOODDOROLNNOLLELCLD €DO0D00DDNODDDODDOBDOOODDDDLOVD AHHHHHHH L HHAHH
oocoOoCOONOCODDDODODDDDEDDDE DODOCDDODLOOBCDDOODODDDDLDL HHHHHHHHHH HAHHHHH
DCCoocCODONDDODDCDODDDCODDE 0po00DOCODEDOODODNDDDDLD HHHHHHHHHHH HH-HHHHN
0OCOOCODDCODODhLCLOBDELDE MMM 0DODODDOUDBLDOODDDDDDDY HHHHHHHHHHHHH HHHHHHHKRHH
ooCcoooCODDCOODECOECOODE MMMMMM DDOODOOLDDDVOODODDOOD HHHHHHHHHHHHEHHNHHAHHHHAHHHEHA
©OoCbOCCODLLDDDODDENDDD MMp MMM pCoDeOCLODLLEDODRDLDN AHHHHHHHHtHHHHHAHHHHHHHHHHHE
DLLDLCLODDLDDDDDCDDD NHMBE NN [MsehhilshiIvisiuiniivislshIvis iy HHHHAH HHHH AR HHHH R HHAHERER
00COCCCDDODDODDODO0 MMpMMMMMMEN  DDOODDBOLDCLUDDDDDLUNE HRHEHHHHRBAHHHHHHHEHHRHHHHHHHA
CCCODCCOCLCCOLLoT MMMPMMMP MMM DDOLDDLYDOLDIDDDOLDD HHHHHHHHHHHHHHHHHHHHHHHHHHHHHEA
OCCODCCDDDRDDODD MEMNMMMMPEME VM BGODODUCLOECLODY HHHHHHHHHHHHHHHHHHHHHAHHH A HHHHA
DCCODCCODDODODE MU MWMMMy MMM P MY COODLOCLNODUDDD  HHHHHHHHHHHHHHHHHHHHHHHHHHHHRRH
DCCODCCODDODODD MMMMP N MM MM Y MMME MM qouoDLoLOLLOrD HHAHHHRHHAHHAHHHHHHHHHHHHHHHAH
OCCOCOLDDOGDODD NUNMPBMMME MMM N MMM OUUNLLDDDIGD  PHHHHHHHHAHHHHHHHHHHHHHHHHRHHA

Figure 3. Connected Component Transform of Figure 2
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4., Sequential operations for "distance" determination

Several investigators over the past decade have con-
sidered picture transformations in which a given subset is
"propagated" over the picture, or dually in which the sub-
set is examined by an expanding array of sensors. (For the
latter approach see Harmon [ 5] and Singer [ 6-8]; compare
also Stevens [ 9].). In early work on digital picture pro-
cessing (Kirsch [2] ), a transformation of this type was
performed by a sequence of local operations performed in
parallel; this approach requires two operations for each
incremental propagation step. More recent discussions of
this type of transformation and its implications for shape
description may be found in several papers by Blum ([10-12];

see also Kotelly [13]‘L who also considers the possible
role of such transformations in visual form perception.

"Propagating" a subset over a picture is tantamount
to finding the "distance", in the sense of the propagation
process, between the subset and each point of the picture.
In this section a simple "distance" concept, appropriate
to digitized pictures, is introduced, and a transformation
is defined which determines the distance from every picture

element to a given subset.
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4.1, Distance

Let P and Q be any two distinct points in a digitized
picture, and let d*(P,Q) be the smallest positive integer
such that there exists a sequence of distinct points
P=P0, Pl,..., Pn=Q with Pi a neighbor of Pi—l, 1=i=n,.

This d* is called the distance from P to Q:; if P=Q, the
distance between them is defined as zero. The distance

from P to a given subset S of the picture is defined as
the smallest of the distances from P to the points in S.

Like connectivity, the distance concept is defined
by iterating the property of being a neighbor. Here, how-
ever, the minimum number of iterations required to "reach"

Q from P is of interest, whereas in the case of connectivity,
the question considered was whether Q could be "reached" at
all from P using only points in a given subset as intermediate
points. As was pointed out for connectivity in Section 3.1,

a "distance" can also be defined using only horizontal and
vertical neighbors as "steps". If d(P,Q) is the distance

from P to Q using this more restricted definition, it is

clear that dz=d*., For simplicity, the restricted definition
will be used in the remainder of this paper.

Evidently, d(P,Q) (and similarly for d*) has all the
properties of a metric*. It should be emphasized, however,
that d is not even approximately the Euclidean distance.

In fact, the locus of points at a given "distance" d>0 from
a given point P is a diagonally oriented square of side d+l

centered at P, rather than a circle**

*It is positive definite by definition, and is clearly symmetric
(the reversal of a sequence from P to Q is a sequence from Q to P
and vice versa). Moreover, since any two sequences from P to Q
and Q to R, respectively, can be put end to end to give a sequence
from P to R, it evidently satisfies the triangle inequality.

** For the metric d*, the corresponding locus is a square of
side 2d+1, centered at P and oriented horizontally and vertically,
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4.2 The distance transformation

Given a digitized picture whose elements have only the
values 0 and 1, it is desired to construct a "distance transform"
of the picture in which each element has an integer value equal
to its distance from the set of 0's. (It is assumed that the
set of 0's is nonempty.) Thus in particular, the 0's remain
unchanged, since they are at zero distance from themselves;
the 1's which are horizontal or vertical neighbors of 0's also
remain unchanged; the 1l's which are horizontal or vertical
neighbors of such 1's become 2's; and so on.

This transform can be performed using just two sequentially

applied local operations as follows: Let

f.(a. .) = 0if a, . =0
11,3 i,J
min (ai—l,j+l' ai,j-l+l) if (i,3)#(1,1) and ai,j=l
mén if (i,3)=(1,1) and ay l=1
=mi + R 4
fz(ai'j)—mln (ai,j, ai+l,j 1, al,j%l )

Theorem. Let C = (ci j) be the picture which results when fl

is applied to the picture A = (ai .) in forward raster sequence,

followed by f. in backward raster sequence. Then C is the

2
distance transform of A,

Proof: Note first that if ai j*l and a horizontal or vertical

14

neighbor of ai . is zero, evidently ci j=l, and conversely.

’ 14

Suppose now that c, 3 is equal to the distance from the (i,J)

I

element to the closest zero element in A for all (i,3j) such

that this distance < k. Let B=(bi j) be the picture which

[

results from applying fl in forward raster sequence to A.

If cy j=k, by the induction hypothesis the distance from

1

the (i,j) element to the nearest zero must be at least k.
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If it is greater than k, by definition of distance it must
be at least k for each of the (i,j) element's horizontal
and vertical neighbors. 1In particular, c . and c,

i+l,3 i,j+1
each =z k, so that c, j=k implies bi j=k by definition of f2

! r -

But th b, . b, .
v en i-1,3 o i,j-1, say the former, must be k-1 by

definition of fl' so that ci_l'jék—l, contradiction,.

The distance transforms for a circle, two rectangles¥,
and regions F, J. and K of Figure 3 are shown as Figure 4.
These transforms illustrate the output of an IBM 7090/94
program, written in FORTRAN, which accepts input digital picture
data as described in Section 3.3. For simplicity, only the odd
distance values are printed out modulo 10, while the even values

are left blank; the points with value zero are printed as X's.

*Each of the rectangles is 1.1 by 1.8 inches, guantized
10 elements to the inch; the difference between their
shapes in the Figure results from the unequal horizontal
and vertical size of a character space on the printer.
The circle appears distorted for the same reason.
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XX1 3 5 7 999999999 7 § 3 IXX
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o XXx1 35791 1XX
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Xx1 3 5 717 777 5 3 1XX
XX1 3 5 777777 55 3 1XX
XXl 3 55 555 3 1XX
XX1 33 555555 33 1XX
XX1 33 333 1XX
XX11 333333  1LXX
XXx11 111 XXX
XXX11111LXXXXX
XXXXXXXXXXX
XXXXXX
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Figure 4. Sheet 1 - Distance
Transforms of Two Rectangles
and a Circle
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4.2, The distance "skeleton"

Blum has suggested in [12] that the locus of points at
which the propagation wave front "intersects itself" may be
perceptually important. This locus defines a sort of "skeleton"
(Blum: "medial axis") for the original picture. In this sub-
section, a "skeleton” subset will be defined for the distance
transform introduced above*, and it will be shown that this
skeleton is the smallest subset of the transform picture from
which the entire transform picture can be reconstructed by
"reversing" the distance-measuring process.

Define the local operations 9, and 9, by

gl(ailj)=max(ai'j, ai,j—l_l' a, .~1)

gz(a. .)=max(a. a

i3 i,9, 2i,9+17Y 2ie1,57Y

Let Gl(P) be the picture which results when 9, is applied to
P in forward raster sequence; GZ(P), the result of applying

9, to P in backward raster sequence; and G(P)=G2(G1(P)).

Lemma 1. If A is any picture and G(A)=(c, .), then all of

oy =aan, 3t 190,370 50 1855700

which are defined are =1.

I, |c -C. ,3' and ‘ci,jﬁci,j-l|

Proof: Let A=(aij), Gl(A)=(bij)' By definition of g; we have

zh, .7% and b, .ZDb, 1 for all 1i,j
i,3-

P55 1,9705-1,3"

so that b, .-1 and Db,

2 .zb, .-1 for all i,j
i,5+1%P1,5 i+1,5°°4,3

*It should be emphasized that since the distance considered
here is non-Euclidean, as already pointed out, the resulting
ngkeleton” is not likely to have any special significance for
visual form perception; however, it is still a useful picture
processing tool.
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Similarly, by definition of g, we have for any B=(bij) and for

all i,j
c. .Z2c. . .=-1 . LEC, .-
i,j i,3+1 cl,] c1+1,j 1
c. . ZC, -1 . = _
lIJ_l cllj Cilj'J cllj l

where G2(B)=(ci ).

3
If we can show that the above relations on the b's remain true
when the b's are replaced by c's (that is, when 9, is applied),
the assertion made in the Lemma will follow immediately, since

= - = -— 3
?e.g.) Ci,j—l_ci,j 1 and ci,j_ci,j-l 1 are equivalent to
c

i,37%,5-1 %
Suppose that these relations hold for all the c's through

the (i,j)th in the sense of the backward raster sequence.

Since g2 can never decrease the value of a picture element,

we have b. . .=b. .+1l=c, .+1l. By the induction hypothesis,
i,j-1"1,3 i,]

ci+1,j—l_l=ci+l,j’ and by the relations on the c's, this

¢, .+l1. Hence

’

= - . . .=1)=c, _+1,
FIE RN LT IR IO Rl 1S U T et PE

proving the induction step. Finally,

c =max (b c -1) =max(b +1, ¢ +1)=c +1

m,n-1 m,n-1, m,n m,n m,n m,n
and similarly cm—l,nzcm,n+1’ completing the proof.
Lemma 2. Let A be a picture such that a, ani j-l-l and
a. .za, .~-1 for all i,j:; then G (A)=A. Similarly, if A
i,j71-1,3 1
i z - . .=Za, .- 11,3,
is such that ai,j ai,j+1 1 and al’J a1+l,J 1 for all i,j

then GZ(A)=A.



- 31 -
Proof: Clearly gl(all)=all‘ If Gl(A)=A for all elements up

to the i,jth (in the sense of the forward raster seqguence),

then gl(ai j)=max(ai

33,5 2,317
t'his=ai 3 by the original assumption about A. The proof of

I

5 gl(ai,j-l)—l’ gl(ai-l j)-l)=max

1 ’

1, ai—l j—1) by induction hypothesis, and

the second part is exactly analogous.

Corollary. G, (G, (A))=G,(a), 6,(G,(a))=G,(a), and

G(G(A))=G(A) for all A
Proof: By the proof of Lemma 1, Gl(A) has the properties of the
first part of Lemma 2, so that Gl(Gl(A))=G1(A), and similarly
for G2(A). By Lemma 1, G(A) has the properties of both parts
of Lemma 2; hence by Lemma 2 G(G(A))=G2(G1(G(A))=G2(G(A))=G(A).

Lemma 3. The distance transform of any picture has the

property of Lemma 1.

Proof: By the Theorem of Section 4.1, in such a picture each
element value is equal to the distance from the element to
a zero-valued element, and clearly these distances for an

element and any of its neighbors can differ by at most 1.
Corollary. If T is any distance transform picture, G(T)=T.

Proof: As for the Corollary to Lemma 2.

Lemma 4. Let A=(aij)’ B=(bij) be pictures such that a, jéb.

1

e

']
%h,x

for all i,j. Let G(A)=(cij), G(B)=(dij), and let ah,k=bh,k
for some h,k. Then ay k=ch x-

Proof: Evidently we must have c, .§di ., for all i,j, so that

’ [

ch,kzd'hkéah,k. But G never decreases the value of a picture

element; hence ah kéch k
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If P#pij) is any picture, P'=(pij) will be called a partial

picture of P if ti .=ti 3 or O for all i,j.

r 14

Corollary. Let T be any distance transform picture, T' an

Y

partial picture of T. Then all the elements of T' which are

equal to the corresponding elements of T are invariant under G.

Proof: Take A=T', B=T in Lemma 4. By Lemma 3, bi j=di 3
11 i,3; h = : : =
a 1,3 ence for all ah,k such that ah,k bh,k’ we have ah,k ch,k,

as required.

for

L 5. L A= .. i =(c. . <V;
emma et (alj) be a picture, G(A) (clj), and let ah,k V;

“h-1,%' “n,k-1, all =V. Then c

“h+1,k’ Sh,k+1 hk V-

Proof: Let Gl(A)=(bij). Since G2 never decreases the val

ue

of an element, we have bh—l,k=ch—l,k=V' bh,k—l=ch,k—1:V’ SO
that bh,k=max(ah,k, bh—l,k—l’ bh,k—l—l)<v’ and ch'k=max(bh'k'
b1kl Py ke <V

If T=(tij) is a distance transform picture, the partial

picture T*=(t*.,) defined by t*, .=t, ., if none of t,
1] i, 1,7 i

. . . . a4 T o i . .+1 .
t1+1,]’ tl,j—l t1,3+1 1s tl,j 0, otherwise

"llj

will be called the skeleton of T. We assume that T is not

the trivial picture every element of which has value m+n.

Theorem. G(T*)=T, and if T' is any partial picture of T
such that G(T')=T, then T* is a partial picture of T'.

In other words, T* is the partial picture of T with fewest

nonzero elements such that G(T*)=T.
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Proof: If T is any picture with integer-valued elements,
let Tk be the set of elements of T which have value k.
Let N be the highest value of any element of T; then by
definition, T*=TN, so that by the Corollary to Lemma 4,

N

G(T*) =T Suppose that G(T*)

N °N° T

M+1~ M+l By definition,

T* contains every element of value M which has no element

of value M+l as a neighbor in T (or equivalently, in G(T%)),

and by the Corollary to Lemma 4, G(T*) still contains these
elements. On the other hand, if th,k=M and has a neighbor

in G(T*) with value M+1l, then by definition of G, the (h, k)
element in G(G(T*)) has value at least M, But G(G(T*))=G(T¥*)
(Corollary to Lemma 2), and by the proof of Lemma 4, the (h, k)
element in G(T*) can have value at most that of the (h,k) ele-
ment in G(T)=T (Corollary to Lemma 3); hence every such element

has value M in G(T*), proving that G(T¥*) This induction

M=TM.
argument proves G(T*)k=Tk gor all k(=N,N-1,...,1,0), so that
G(T*)=T. Conversely, let T' be any partial picture of T such
that G(T;)=T, and let th,k be an element of T of value M>0
which has no neighbor in T of value M+l and which fails to

be in T'. Then the values of its neighbors in G(Tf)=T are

=M (Lemma 1), while its value in T’ is 0 <M, so that by

Lemma 5 its value in G(T') is still <M, contradicting

G(T')=T. Thus T' must contain every element of T* of

value >0, completing the proof.
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Skeletons for the pictures of Figure 4 are shown as
Figure 5. 1In this Figure, the nonzero skeleton point values
are printed out modulo 10. As Figure 5 b-c show, the skeleton
is not invariant under rotation; note also that the Euclidean
"skeleton” for a circle would evidently be just the point at

its center, unlike the skeleton shown in Figure 5a.



ERXXKXXXRXAXXKAKXKX

x4 1X
L 2 X
4 3 b 4
{ 4 4 X
» 55555555 X X
£ 4 4 X X
X 3 3 X X
X 7 2 X X
¥l 1X X
EXXXLXXXXXXXXXXXXX X
X
X 7
X
X
XXXXXXXX X
XXXXAXXXX XX X
XXX XXX X
XXX XXX X
XX X X X
XX XX
x X XX
X 5 XX
£ X 5 5 XX
X i XX
A X 9 XX
£ X X
X % 1 1 XX
X% 2 2 XX
XX 3 3 XX
XX 4 XX
X ¥ 33 XX
%X 2 XX
X X 1 XX
X X N XX
X X XX
X X 7 XX
XX XX
X X 4 XX
X X XX
X X XX
XX XX
XXX XXX
XXX XXXXX
XXXXXXKXX XXX
XXXXXX

Figure 5. Sheet 1
Skeletons for Figure 4



XXXXXXKX

XX XXX
XXXXXXXXXXX XX XXXX XXXXXX
XXXX XXX XXX XXX XXXXXXXXXXXX
XXXX XXX XX XXX AAXXXXRXXXXXXX
XXXX XXX XXX XAKA XXAXXXXXXXXXXXXK
XXX XAXX XXX XXXX XX XXXX XXKX
XXX XXX Xxx XXXX XXXXX XXX1 LXXX
XXX XXX XX XXX XXXXXXX XXX 3 XXAX
XXXX XXXX XXX XXX XXX XXX XXX 4 XXKX
XXXX XXX AX XXX X XXX XXX XXX 5 s XXX
XxX XXX XXX XXXX XXX XXX XXXX 66 XXX
XXX XXX XXX XXX XXX XX XXX 7 XXX
XXX XX XX XX& XXXXX XXX XXX XXX 88 XXX X
XXX XXX XX XXXXX XXX XX XXX 8 XXX Xx
XXXX XXX XXX XXX XX XX XXX XXX 8 XXX XX
XXXX XXXX XXX XXXXX XXX XX XXX 7 XXX XXX
XXX XXXX XXX XXXXXX XX XXX XXXX 7 XXX XXX X
XX XXXX AX XXXXX XXX XXX XXX X 6 XXX |33
x XXXX XXX XXXXX XX XXX XXXX 6 XXX XXXX
X XXXX XXX XXXX XXX XXX XXX 5 XXXX XXX
XXXX XXX XXXX XXXXXX XXXX 5 XXX AXXX
XX XX XXX XXXX XXX 4 XXX XXX
XXXX XXX XXXX X XXX 44 XXX XXXX
XXXX XXXX  XXKX XXX 4 XXXX XAX
XXXX AXXXXXXXXXX XXXX 4 XXX XXX
XXXX XXXX XXXXXX XXX 4 XXX XXXX
XXXX XXX XXXX XXX 4 XXX XX%
XXX X XXX XXXX XXX 4 XXX XXX
XXXX XXX XXX XXX 3 XXX XXX
XX XXXX AX XXXXXX XXXX 3 XXX XXXX
x XXXXX XXX XXXXXXXXXX XXX 3 XXX XXX
XXXXX XXX XXXXXXXXXXXKX XXX 2 XAX XXXX
XXXXX XXX XXXXX XXXXX XXXX 2 XXXX XXXX
XXXXX XXX XXXX AXXXX XXXX 2 XXKX XXX
XXXXX XXXX XXXX XXXX XXXXL XXXX XXXX
XXXXX XXX XXXX XXX XXXK111XXX XXX
XXXXX XXX XXX1 3 Xxx XXXXXXXX XXX
XXXXX XXX XXX XXX XXXXXX XXXXX
XXXXX XXXX XXX [ [ XX XXXX XXXXX
XXXXKX XXX XX XXXX 8 XXX XXXXXX
XXXXX XXXX XXX 999 XXX XXXXXXXX
XAXXX XXX XXX 9 8 XXX XXXXXXXX
XXXX XXX XXXX 8 7 XXX XXXXXXXXXX
XXXX XXXX XXX 8 s XXX XXXXLXXXXXK
XXX XXXX XXX 3 3 Xxx XXXX 1XXXXXXX
XX XXXX XXXX XXXX XXX 2 XXXXXXX
XX XXXX XXXX AXXX XXX 2 XXXXXX
X XXXX XXXXX XXXXX XXX 3 XXX XX
X XXXX XXXXX XXAXXX XXXX 3 XXX XX
XXXXX XXXXX XXKXXXXXX XXX 3 KKK XXX
XXXXX XXXXX XXXXXXXXX XXX 3 XXX XXXX
XXXXX XXXXXXXXXXKX XXX AXXX XXXX
XXXX XXXXXXX XXX 3 XXX XXX
XXXXX XXXX XAX 33 XXX XXA
XXXX XXX XAX 33 XXX XXX
XXXX XXXXX XXX 33 XXX XXX
XXXX XXXXXXX XXX 33 XXX XXX
XXXX XXX XXXX XAX 3 XXX KX
XXXXX XXX XXX X&X 3 XXX XAX
XXXXX XXX XKXX XXXX 2 AXX X&X
XXXX XX XXXX XXXX 22 XXX XXX
XXX XX XXXX XXX 22 XXXX XXX
XXX 33 XXX AXXX 2 XXX | XXX
XXXX XXXX XXX XXXX 3 XXX XAX
XXX XXXX XXX XXX 33 XXX XXXX
XX XXKXX XXX XXX 33 XXXX XXX
XX XXXXX XXX XXX 3 XXX XXX
AXK XXXX XX XK KXXX 4 XXX XXX
XXX XXXX XXX XXXX 4 XXX XXX
XXRXX XXXX XXX XXX 5 XXX XXXX
XXAXXXXXX XXXXX XXX XXX 55 XXX XXX
XXXXXXXXXXXXX XXXX AXX 5 XXX XXX
XXXXXXX XXX XXX 4 XXXX  XXXX
XXX XXX XXX 4 XXX XXX
XXXX XXX 4 XXX XXX
xAXX XXXX AXX XXX
XXX XXX 4 XXX XXX
XXX XXX 44 XXX XXX
XXXX XXX 4 XXX XXX
XAXX XXX 44 XXX XXX %X
XXX AXX 44 XXX XXX XXXXX
XXX XAX 44 XXX XXX XXXXXX
x X XXX XXX 4 XXXK XXX XXXX XXX
XXX XXXX XXX XXX 4 XXXX XXX XX XXX
x XXXX XXXXXX  XXXX XXX 3 2 XXX XXX XXXXK XXX
X XXXAXX XXXXXXXXXXX XXX 33 XXX XXX XXX XXX
X XXXXXX XXX XXXXXX XXX 3 XXXX XXXX XX4& xXx
Xx XXX XXX XXX XXX 2 XXXX XXXX XXX xx
XXX XXX XXXX XXX XX 22 XKXXX XX XX XXXX XX
XXX XX XXX XXXKXXX XX 2 XXXX XXXX XXXK  XXXX
XXX XXX XXX XXXXXX XXX XXXX XAXX XXXX XXXA&
XXX XX XXX XXXXXXXXXXXX XXXAXXX XXxX XXX XXXX
XXX XXX XXXXXXXX XXXXXXXX XAX XXX X XXXX XXX
XXX XXXXXXXXXXXXX XXXXX XXX XXxx Xxx XXX
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5. Applications: Connectivity and proximity

The connectivity transformation described in Section 3
has several immediate applications. Once a label has been
assigned to each connected component of a picture, it is
trivial to count the number of such components by simply
counting the number of labels which were used. (A special-
purpose version of the connected component program can be
written which only counts the components but does not label
each element of each component; see Nuttall [14] and Sabbagh
[15] pp 43-48. It is also possible to perform this "blob
counting" operation by a process of successively deleting
from each component border elements which do not disconnect
the component until only one element per component remains;?*
for this approach, which is easily implemented using parallel
local operations, see Kirsch [2], Minot [16] and Izzo [17-18].
A closely related approach, using accretion rather than deletion,
has been implemented by von Foerster and his colleagues [19-21])
One can also measure the area of any given component by counting

the number of times its label occurs.

*Provided that the components are simply connected; if they
have "holes" in them, a more complicated procedure is necessary.
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¢ 5.1,

Adjacency and order of connectivity

Two somewhat less trivial problems which can be solved
with the aid of the basic connectivity transformation are

(a) Constructing the graph corresponding to a given

dissection of a picture into connected components.

(b) Determining the order of connectivity of a given

connected component.

In the graph of any dissection of the picture, each
connected component is represented by a single node or
vertex; for simplicity, these may be taken to be the vertices
of a regular polygon. Two nodes are joined by an arc (a side
or diagonal of the polygon) if and only if the corresponding
components are adjacent. For many purposes it is convenient
to represent the exterior of the picture by a single additional
node, which is considered to be adjacent to every component
. having elements on the boundary of the picture. A graph with

k nodes is completely specified by its incidence matrix; this

is a k-1 by k-1 triangular matrix (aij), i<j, in which a.j=l
if the ith and jth nodes are joined by an arc; =0 otherwise.
In Figure 3, the connected components labeled A,...,M,
together with the connected components of the set of blank
points, constitute a dissection of the picture. Since the
border of Figure 2 was black, the additional "exterior" com-
ponent is connected to all of these blank points except those
in the belts immediately surrounding regions F, G, and J.
The set of blank points thus has four components, namely the
one of which the picture border is a part and the ones sur-
rounding F, G, J. The nonzero entries in the incidence matrix

of the graph of Figure 3 are shown below:
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Border Border Border

Region of F of G of J ABCDEPFGHTIJKL
Picture

border 0 0 0 111110011011
Border

of F 0 0 000101000000
Border

of G 0 000100100000
Border

of J 000100000100

A computer program for constructing the graph of a given
dissection is easily written, once the connected components
of the dissection have been labeled. It suffices, for example,
to examine every two by two subpicture and to enter 1l's in the
appropriate positions in an incidence matrix whenever such a
subpicture contains points which have two or more different
labels. The graph of Figure 3, constructed in this way by
a FORTRAN program and output by a tape-controlled plotter,
is shown as the first part of Figure 6.

Once the graph has been constructed, it is easy to solve
the second problem posed earlier. It is easily seen that the
order of connectivity of a connected component is equal to the
number of nonadjacent "pieces" into which the picture is divided
if the given component is deleted. Evidently, this is just the
number of connected components into which the graph is divided
if the corresponding node and the arcs emanating from it are

deleted. This number can be determined by examining the



VERTEX 1 IS THE BOUNDARY REGION (OR UNIVER':

REGION ORDER OF CONNECTIVITY
1 BOUNDARY OF PICTURE 10
2 BOUNDARY OF REGION F 2
3 BOUNDARY OF REGION G 2
4 BOUNDARY OF REGION J 2
D 4

Figure 6. Graph and Multiple Connectivity Table for Figure 3.
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incidence matrix of the graph after deleting the corresponding
row and column*, A FORTRAN program which performs this analysis

has been written; its output for Figure 3 is shown in the second

part of Figure 6.

*This number could be determined directly from the picture as
follows: Temporarily label the points of the given component 1,
the points of its complement O, whether these points were 1l or O
in the original picture. Apply the connected component labelling
program to this new set of 0's and simply count the number of its
components. However, it is much simpler and faster to determine
the orders of connectivity from the graph, once this has been
constructed.
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5.2. Proximity

Closely related to the two problems just discussed is the
question of defining a "graph" for a picture such as Figure 3
ignoring the unlabeled "borders", and considering two of the
labelled regions as being "adjacent” if they are separated only
by a border. Intuitively, region I on Figure 3 is adjacent in
this sense to regions B, C and D, but region B is not adjacent
to region D. The graph for the labelled regions and "exterior
region” of Figure 3 corresponding to this notion of adjacency
is shown as Figure 7.

The concept of adjacency in the intuitive definition just
given requires careful consideration. If the borders between
regions in a picture all have approximately the same thickness,
the adjacency of two regions in this sense essentially reflects
their degree of proximity:; regions are adjacent provided they
approach one another within a distance just greater than the
border thickness.* As in the case of true adjacency, this can
be determined by examining all possible subpictures of the
appropriate size and entering l's in the incidence matrix
whenever points with two or more labels are contained within
such a subpicture. The graph in Figure 7 was drawn by a
FORTRAN program which analyzed 4 by 4 subpictures of Figure
3 in this manner.

A more difficult problem is presented if the borders
between regions are of varying thickness. Even in this case,
however, one might proceed by determining the degree and direction

of the elongation of any segment of border (see Section 6.2.).

*One should certainly not define two regions as being "adjacent”
if it is merely possible to go from one to the other by moving
through border elements only; by this criterion, regions A and B,
B and D on Figure 3 would be "adjacent", and K would be "adjacent”
to the picture exterior.
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"Adjacent” could then be defined as "separated by a segment
of border which is tangentially elongated". This definition
would be consistent with the intuitive concept of adjacency for
the labelled regions of Figure 3.

It should be pointed out that the intuitive definitions
of adjacency suggested in the last three paragraphs are of more
limited usefulness than the mathematical definition. For example,
one cannot in general determine the orderof connectivity of a
region from a graph based on such a definition. Examination
of the graph in Figure 7 does indeed show, in agreement with
intuition, that all the regionsvexcept D are simply connected,
while D has order of connectivity 4. However, suppose that in
Figure 3 the six D's to the right of the top row of F's are
replaced by blanks, making a "cut" in region D. This does not
change the graph of the Figure (region D is still connected,
and region F still not adjacent, in the intuitive sense, to
the picture exterior); but region D now has order of connectivity

only 3%,

*Note that making this "cut" does change the graph in Figure

6, since it combines the "border of F" region with the "picture
border" region. The modified graph does in fact reflect the
orders of connectivity which result from making the cut.
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6. Applications: Shape (Elongation)

The distance transform can be used to obtain a variety
of information about the shapes of regions on a picture.
In this section, two applications of this transform to the

definition of elongation are discussed. The "elongation"

considered here is an intrinsic shape property; a snake is
considered to be elongated even when it is coiled. It is
difficult to define this property in conventional geometrical
terms, in spite of its evident intuitive significance,

Since the connected component transformation provides
the ability to single out any component of a picture for
analysis of its shape, it will be assumed below that the
given picture contains only a single connected region
("figure") consisting of 1's, and that the remainder of

the picture consists of 0's.
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6.1. Elongation as the proportion of a figure which lies
close to its boundary

In his original papers [10-11] on the propagation concept,
Blum suggested that the successive wavefronts--that is, the
sets of points which are at a given distance from the original
figure boundary--could provide useful information about the
shape of the figure. For example, if the figure is a sguare,
the wavefronts are concentric squares, and the numbers of
points in them decrease linearly to zero. (See the solid
curve in Figure 8a). On the other hand, if the figure is
a very elongated rectangle (Figure 8b), the number of points
in a wavefront decreases linearly until the center line of
the rectangle is reached, when it drops abruptly to zero.
Analogous plots of number of points vs. number of steps for
three irreqular figures of approximately equal area (regions
F, J and K of Figure 3) are shown in Figure 8c-e.

As the solid curves in Figure 8, especially parts (a-b),
indicate, the manner in which wavefront "perimeter"” decreases
provides a measure of the elongation of a given figure. This
measure represents the degree to which the interior of the
figure lies close to its boundary, which is intuitively related
to the intrinsic elongation of the figure.

A shape descriptor closely allied to wavefront perimeter
is the number of different squares of a given size which are
contained within a given figure and touch its boundary. For
simplicity, only squares whose sides are parallel to the sides
of the picture will be considered. These numbers can be com-
puted by systematically erecting all possible sqguares on the

cross-sections of the figure by the rows of the picture.
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An IBM 7090/94 program for doing this has been written in
FAP. 1In Figure 8, the numbers of boundary-touching squares
are plotted as dashed curves for comparison with the wavefront
perimeters.*

The measure of elongation provided by these shape descriptors
is relatively crude, since they are computed over the entire
figure. A much more sensitive measure of elongation will now

be defined, using the distance skeleton concept introduced in

Section 4.3.

*The wavefront and enclosed squares descriptors are conceptually
related, but not equivalent, to the "Buffon needle” shape descriptor
proposed by Tenery [22-23], which involves the probability thgt

a line segment of given length randomly dropped on a figure with

one end inside the figure also has the other end inside.
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6.2 Elongated parts of a figure

The skeleton subset introduced in Section 4.3 can be used
to define a variety of useful shape properties. In this section
it is applied, in combination with proximity analysis (see
Section 5.2.), to the problem of determining elongated parts
of a given figure. The approach described below is based on
the intuitively appealing idea that any elongated figure part
should give rise to a skeleton subset similar to that of an
elongated rectangle. Such a skeleton should contain a large
number of adjacent or proximate points located a relatively
short distance away from the figure border. If the "reverse"
distance transformation (Section 4.3.) is applied to this set
of points, the elongated part of the original figure should
be regenerated.

Consider as an example the fictitious "hydrography" of
Figure 9(a), in which the X's are water and the blanks land.
Intuitively, the river, tributaries and creeks are elongated,
but the lake and bay are not. Figure 9(b) shows the correspond-
ing skeleton locus modulo 10, where the land points have been
treated as 0's, the water points as l's. 1In this figure the
components of the points with values 5 or less, defined by a
proximity criterion using a 3 by 3 subpicture, have been circled*.
The large components (25 elements or more) evidently correspond
to elongated portions of the hydrography, the one at the lower
right to the elongated loop of lake around the island. In Figure
9(c) these elongated pieces have been regenerated by applying
the reverse distance transform starting with these large com-
ponents only. The regenerated parts are represented by E's,

the remaining original water points by dots.

*The number 5 is an arbitrary threshold, not necessarily
optimum. Skeleton points contained in the same 3 x 3 sub-
picture were considered to belong to the same component
only if their values differed by two or less.
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This example suggests the following general procedure for
determining elongated parts of a figure:
(1) Apply the distance transform to the figure and determine
the skeleton locus.
(2) For each k=2,3,..., up to half the picture diameter

if necessary, consider the set S, of skeleton points

k
which have values =k.

(3) Determine "proximity components" of each S and

count the number of points in each compone:t.
(4) Select those components, if any, which have more than
tk points. A reasonable value for tk is in the range
S5k-10k*, corresponding to a set of proximate skeleton
points whose "length" is at least 2% times the "width"
of the piece of figure which gave rise to it.
(5) Apply the reverse distance transform to these com-

ponents to reconstruct the elongated parts of the

original figure.

*This uncertainty can be reduced if the skeleton locus is
“thinned" before performing this step.
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Appendix

Proof of the equivalence of parallel
and sequential local operations

We must show that any local operation applied in parallel
is equivalent to a series of local operations applied se-
quentially, and vice versa. But indeed, let f be any local

operation which when applied in parallel takes a, . into

’

a; ., and let the values of the ai .'s and a* .'s range between

’ ’ 1

r .
0 and 2°-1. Now define the local operations g and h as
follows: g takes aij into

r -
! .=27a, .+f ! .
i,) all] ([2 ai—llj_l
[2_ra

-r

1,127 %a 1.[27"a

a ! . ', .
i-l,j i-1,3+1°’

1,9-17734, 5721, 54172541, 3172141, 5 2i41, 341

where the bracket denotes the integer part; and h takes ai

: " —_ Y -r_, . =r . . '
1 o A » « e . . . !

nt al'J al':l 2°[2 allJ] Evidently [2 ai,j] is Ju:t
a. ., so that a! .=27a. . + a.*.; and then a! .=a! .-2"a, .=
i, i,J i3 i, i,3 i,3 i,J

ai*j. Hence if g is applied to the picture sequentially,
4

and then h is applied sequentially,* the result is exactly the

same as if f is applied in parallel.
conversely, let f be any local operation which when ap-
plied sequentially takes a; . into a.*j. To construct a

1 1,

sequence of local operations which produce the same result as

*h of course involves only the (i,j) point and not any of

its neighbors, so that applying it to the picture "sequentially"”
and "in parallel" are no different. This proof and that of

the converse use the device of "shifting" the element values,

by multiplying them by 2T, so as to keep them "separate" from
other values which are to be stored at the same picture element
locations. Taking [2'rai j] eliminates the new value an§
"shifts" the original valué back, while taking aj -2T[2 rai,j]
eliminates the shifted original value. It would éiso have

been possible to formulate proofs which used powers of different

primes to keep the values separate, as in Section 2.1.



f when they are successively applied in parallel, we proceed

as follows:

Define ao,j=am+llj=ai’o=ai'n+l=v,lélém,léjén, where v is a
value not taken on by any a, 5 or a; j,léiém, l=j=n. Let all
C..ak . lie i 5 2F_1,
1,j’a1,3 and v lie in the range 0 to 2°-1

Define functions wo'wR'wL'wU'wD as follows:

¢ (a. )=2"a

K- T
(o} 1,] 1,7 1,]

r_ ,-r
¢R(ai'j)—2 2 ai,j]+ai 5-

r -r
(e, g0=2702 "ay Sl+ay oy i,5+1
r -r r -r
. L )= . . ta. . . .
WU(al,]) 272 al,j] al+l,j i+1,3

(a, .y)=pr[27*F
i3y, 4)=2702 Tay i4ay ) g 41,97

_.r
Then ¢R(¢o(ai’j))—2 ai,j+ai,j-l'

preserves the original element values a; 3 multiplied by 2r,

14

so that ¢R applied after L

but shifts the unmultiplied element values one step to the
right. Similarly, b by and N applied after b shift the
unmultiplied element values one step to the left, upward and
downward, respectively.

Let g take a, 3 into [2—ra. .] if a. .—2r[2_ra. j]=v,

[ Efj l,] l'
i-l,j—l]""'[z ai+l,j+l])' otherwise. Then

it is easily verified that the following sequence of local

and into f([Z—ra

operations, each applied in parallel, produces the same result
as applying f sequentially:

n-1 n-1 m-1 m-1

\llol\llR :WL l\l’D ’ U /9,

n-2 n-1 m-1 m-1
\hol‘hR I¢L "llR,‘lJD l‘lJU 19,

n-1 n-2 m-1 m-1
wo'wR'wL ’wR le ¥y 19,



(mn subsequences ending in g; the general subsequence is

n-j n-1 j-1 m-i m-1 i-1
bor¥p Tl Tevg elp adg s .g).

In fact, the general subsequence successively converts every

element a ¢ of the matrix to the right, left, above and

’

below the (i,j) element to the value 2raS t+v, while the

1

(i,3) element retains the value 2rai j+ai j; g then operates

like f on the (i,j) element, while taking every other element
back into ag - Thus applying the subsequences in succession
((ilj)=(lll)l(112)1"‘l(lln)l(2ll)l"‘l(2ln)l"°l(mll)l"'l

(m,n)) is the same as applying f sequentially.



