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1. Introduction 

Computer programs for processing digitized pictorial 

information have received increasing attention in recent 

years. Much of the work done in this field has involved 

performing "local" operations on picture "neighborhoods. 'I 

As several investigators have shown, a wide variety of 

picture processing transformations can be accomplished 

by applying such operations independently, or "in parallel", 

to each element of the given picture. 

This paper suggests that local operations performed 

on picture elements taken in a definite sequence, using 

at each step the results obtained by operating on the 

preceding elements in the sequence, may be preferable to 

the "parallel" approach in some cases. It is shown that 

the parallel and sequential approaches are mathematically 

equivalent, and that the latter should be competitive in 

processing time required if a sequential computer is used. 

"Sequential" local operations for performing two 

basic picture transformations are next described. The 

first of these labels the connected components of any 

given picture subset, while the second determines the 

"distance" (in a certain sense) from every picture ele- 

ment to the nearest element of a given subset. In connec- 

tion with the latter transformation, a ''skeleton" subset 

is defined which can be used in place of the given subset 

to generate the same transformed picture by applying the 

"reverse" local operations sequentially. Examples of 

the outputs of sequential computer programs which per- 

form these transformations are given. 

In the concluding sections of this paper, various 

applications of these basic picture transformations to 
the analysis of picture subsets are indicated. Programs 
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are described which construct the graphs corresponding 

to dissections of a picture into regions, and which deter- 

mine the orders of connectivity of the multiply connected 

regions. 

from non-elongated regions or parts of regions using the 

"distance" transformation are presented, one of them in- 

volving components of the skeleton subset. 

Two approaches to the discrimination of elongated 
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2 .  Sequential  and p a r a l l e l  neiqhborhood operations 

2.1.  Operations on d iq i t i zed  p i c tu re s  

A d i g i t i z e d  p ic ture ,  f o r  t h e  purposes of t h i s  

discussion,  i s  a f i n i t e  rectangular a r ray  of ' 'points" 

or  "elements", each of which has associated with it one 

of a d i s c r e t e  f i n i t e  set of ' 'values." I f  t h e  a r r ay  has  

m rows and n columns, any "point" i n  it is  spec i f ied  

by a p a i r  of numbers i, j (lsiZm, lSjSn) denoting i t s  

row and column. The p ic ture  can thus be represented 

as an m by n matrix i n  which each en t ry  a has one of 
i j  

t h e  "values 'I say v1 . . . ,v I n  p rac t i ce ,  m and n may 

be of t h e  order of 23 t o  2" and k may range from 2 t o  
10 2 .  

1 

By an operat ion on a d i g i t i z e d  p i c tu re  i s  meant a 

funct ion which transforms a given p i c tu re  matrix i n t o  

another one. A general  funct ion of t h i s  type has  mn 

numerical arguments (one f o r  each pos i t ion  i n  t h e  ma t r ix ) ,  

and is  correspondingly d i f f i c u l t  t o  handle computationally. 

For p r a c t i c a l  purposes, it i s  des i rab le  t o  work with 

operat ions on d i g i t i z e d  p i c tu re s  which can be defined i n  

t e r m s  of functions having considerably f e w e r  arguments. 

By a l o c a l  operation or neiqhborhood operation on 

a p i c tu re  i s  meant a function which def ines  a value f o r  

each element i n  the transformed p ic tu re  i n  t e r m s  of the 

values of the corresponding element and a small set of 

i t s  neighbors i n  the  given p i c tu re .  For example, such 

operat ions can be defined using a neighborhood w h i c h  

c o n s i s t s  of t h e  given element and i t s  e igh t  immediate 

neighbors; an operation of t h i s  type has only nine argu- 

ments and is  of the form 
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a* . = f ( a  i-1, j-1tai-l,  j , a  i -1 ,  j + l  , a  i, j - l t a i ,  j ,  
1 1 3  

a i , j + l J  a i+ l , j -1  Jai+l, j ' a i+ l ,  j + l  1 

I n  what follows w e  s h a l l  consider only operations of t h i s  

type.  * 
Local operations can be used not only t o  generate 

transforms of a given p ic ture ,  but  a l s o  t o  def ine d is -  

t inguished subsets  of t h e  p i c tu re .  For example, one 

can def ine  a p i c t u r e  a s  having a ce r t a in  l o c a l  property 

a t  a given point  i f  t h e  values of t h e  poin t  and i t s  

neighbors s a t i s f y  c e r t a i n  conditions ( a l l  t he  same, 

ha l f  the same and t h e  rest d i f f e r e n t ,  e t c . ) .  Given any 

such l o c a l  property,  one can always def ine a l o c a l  

operat ion which assigns ( say)  t h e  value 1 t o  poin ts  

which have t h e  property,  and t h e  value 0 t o  poin ts  

which do not  have it. This l o c a l  operation is  i n  effect 

the c h a r a c t e r i s t i c  function of the set  of po in ts  w h i c h  

have the property.  T h e  transformed p ic tu re  which it 

produces can be used t o  select t h e  poin ts  of the o r ig ina l  

p i c t u r e  which have t h e  property by taking t h e  log ica l  

''and" of the o r i g i n a l  and t h e  transform. 

As t h e  l a s t  remark suggests ,  one can a l s o  consider 

l o c a l  operations which involve more than one p i c tu re  

a t  a t i m e .  However, from a formal standpoint no gain 

*The funct ion f i s  not  defined f o r  "border" p i c t u r e  ele- 
ments which do not have a l l  e ight  neighbors. To avoid 
such exceptions,  one can "augment" the p i c tu re  matrix 
by adding a zeroth r o w  and column, an m + l s t  row and an 
n + l s t  column, giving these f i c t i t i o u s  elements a value 
which do not  occur i n  the  ' ' real"  p i c t u r e  a r r ay ,  and 
def in ing  t h e  funct ion appropriately when some of i t s  
arguments have th i s  value. Al te rna t ive ly ,  one can add 
t o  t h e  d e f i n i t i o n  of f the phrase " for  whichever of 
these  elements is  defined." 
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i n  genera l i ty  r e s u l t s  from th is .  I n  fac t ,  suppose t h a t  

one has  two p ic tu re s  ( a  

(m by n ) ,  with element values vl, ... v 

respec t ive ly :  one can then def ine a n e w  m by n p ic ture  

(c i j )  of t he  form 

) ,  (bi j )  of t h e  same dimensions i j  
and u ... u r 1' St 

c i j  = f ( a  i-1 , j -1 ,..., a i+l, j+l :b i - l ,  j-1' *..'i+l, j + l  1 

However, any such (c ) can always be defined using l o c a l  

operat ions on a s ing le  picture .  For example, consider 

the m by n p i c t u r e  ( A i j ) ,  

cp3(n) be the  highest  powers of 2 and 3 which divide n ,  

respec t ive ly ,  w h e r e  n i s  any in teger .  Then 

i j  

=2ai j3bi j  : l e t  (p2 ( n )  , 
where 

i s  t h e  r e s u l t  of applying a l o c a l  operation t o  ( A  ) .  i j  
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2 . 2 .  P a r a l l e l  operations 

Many usefu l  transformations of a given p i c tu re  

can be achieved by performing a s ing le  l o c a l  operat ion,  

o r  a t  most a f e w  of t h e m  i n  succession, on each point  

of t h e  p i c tu re .  For example, a "noisy" p i c tu re  can 

o f t en  be e f f e c t i v e l y  "smoothed, I' or  an llunsharp" p i c tu re  

''enhanced," by a s ing le  neighborhood operation which 

takes  a l o c a l  average or  computes a f i n i t e  - difference 

Laplacian. Similar ly ,  a p ic ture  which contains th i ck  

"roads" ( " l i n e s "  or  ''curves" of po in ts  having given 

va lues)  can be "thinned" by i t e r a t i n g  a ''border element 

de l e t ion"  operat ion,  perhaps a l t e rna ted  with a smoothing 

operat ion,  where t h e  number of i t e r a t i o n s  required i s  

r e l a t i v e l y  s m a l l  s ince  t h e  roads a re  narrow compared t o  

t h e  p i c t u r e  s i z e .  Transformations of these  types have 

been demonstrated by Dinneen [l], Kirsch [ 2 ] ,  Unger [ 3 ] ,  

Narasimhan [4] and others .  These operations can a l s o  

be used t o  def ine p ic ture  subsets  cons is t ing  of po in ts  

which have "smooth" or  "broken" neighborhoods, l i e  on 

"edges I' or  "roads, I' e tc  . 
Each of t he  l o c a l  operations used i n  t h e  examples 

j u s t  given is  performed independently on every point 

of the p i c tu re .  The arguments ( a i - l ,  j-1 , . . . , a  i + l ,  j + l  1 
a r e  always the o r i g i n a l  p i c tu re  matrix values:  the 

,... , a  ) a re  s tored ,  but  i-1, j-1 i+l, j + l  new values a* .=f ( a  
13 

are not used u n t i l  the operation has been performed f o r  

every ( i , j ) ,  when they then become arguments f o r  the 

next operat ion ( i f  any).  Since t h e  sequence i n  which the  

poin ts  are processed i s  thus e n t i r e l y  i r r e l e v a n t ,  t he  

operat ion can be thought of a s  being performed ' 'in p a r a l l e l ,  I' 

simultaneously f o r  every p i c t u r e  point .  Extensive consider- 

a t i o n  has i n  f a c t  been given t o  the design of computers 
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which actually do perform identical operations simultane- 

ously on each of a large number of stored quantities. 

Even when processing digitized pictures on conventional 

sequential computers, many investigators have used pro- 

grams which simulate the operation of such "parallel" 

machines. 

The wide variety of picture transformations which 

can be performed using local operations applied in 

parallel has given rise to the widespread belief that 

this approach is optimum for local picture processing 

in general. This paper makes the countersuggestion 

that an alternative type of processing, in which se- 
guential application of local operations plays a 

crucial role, is equally general in scope, and may 

even have significant advantages, particularly when 

processing is being done on a sequential computer. 

The concept of a sequentially applied neighborhood 
operation will now be defined, and the relative merits 

of the parallel and sequential approaches considered. 
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2.3. Sequential operations 

Suppose that a local operation is applied to the 

points of a digitized picture in some definite sequence. 

For simplicity, suppose that the points are processed 

row by row beginning at the upper left - that is, in the 
sequence a ll,a12,...aln,a21,...,a ,..., a ..., a . 
Unlike the cases described in Section 2.2, however, sup- 

pose that as soon as a point is processed, its - 
value rather than the original value is used in processing 

and succeeding points which have it as neighbor. If 

this is done, the general form of the operation becomes 

2n ml mn 

since points (i-l,j-l), (i-l,j), (i-l,j+l) and (i,j-l) 

have already been processed, while the remaining points 

have not yet been processed. Such an operation will be 

called sequential. 

At first glance, this type of operation seems more 

complex, and hence presumably less basic, than the "parallel" 

type, which uniformly uses "old" values until the entire 

picture has been processed. However, it is easily shown 

that the two types of operation are entirely equivalent 

in the sense of the following 

Theorem. Any picture transformation that can be accom- 

plished by a series of parallel local operations can also 

be accomplished by a series of sequential local operations, 

and conversely. 

A proof of this Theorem is given in Appendix A. 

In the proof, it is shown that any parallel local 

operation is equivalent to just two sequential local 
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operations: but a general sequential local operation is 

matched only by a sequence of 2mn(m+n-1) parallel local 
operations. It is possible, of course, that this figure 

is not a minimum even in the general case. 
one can often obtain the result of a sequential operation 

using relatively few parallel operations which produce 

the result without following the stepwise progress of the 

sequential operation. However, it at least appears plausible 

that there exist picture transformations which are more 

efficiently performed using sequentially applied operations. 

In fact, 

To make this comparison more explicit, suppose that 

it takes time T to perform a single local operation. A 

sequential computer can then perform such an operation 

in the neighborhood of every element of an m by n picture 
in time mnT; there should be essentially no difference 

between the cases in which the operation is performed "in 

parallel" (that is, using old element values at every 

step) or "sequentially" (using new values insofar as 

avaliable). Let F be a picture transformation which 

can be performed by a single sequentially applied local 

operation, but which requires 2mn(m+n-l) local operations 

in parallel. Then the sequential computer can perform 

F "sequentially" in time mnT, but requires time 2m n (m+n-l)T 

to perform it ''in parallel. I' Furthermore, suppose given 
a parallel computer which can perform a local operation 

in time T on every picture neighborhood simultaneously. 

Even this computer requires time 2mn(rn+n-l)T to perform F 

"in parallel," so that the sequential computer can still 

perform it "sequentially" in less time. 

2 2  

The figures just given should by no means be inter- 

preted as implying that sequential computers are generally 

faster than parallel computers at performing picture pro- 



- 10 - 

cessing tasks. 

which cannot be performed except by processing the picture 

element by element in sequence. Many operations, even 

if they have very simple definitions in terms of such 

sequential processing, can also be accomplished in other 

ways. For example, the distance transformation defined 

in Section 4 requires just two sequentially applied 

local operations, involving a total of 2mn individual 

operations on picture element neighborhoods, or a pro- 

cessing time of 2mnT. On the other hand, it is easily 

shown that this transformation can also be accomplished 

by applying the local operation 

These figures apply only to an operation 

m+n times to every picture element. If this non-sequen- 

tial procedure is carried out on a sequential computer, 

mn(m+n) individual local operations must be performed; 

this is (m+n)/2 times as many as needed for the method 

of Section 4, with a processing time of mn(m+n)T. How- 

ever, if a parallel computer is available, the required 

processing time is only (m+n)T, a savinqby a factor of 

2mn/(m+n). Thus if m=n, parallel processing on a parallel 

computer is n times faster than sequential processing on 

a sequential computer; but this in turn is n times faster 

than "parallel" processing on a sequential computer 

even when this efficient parallel method of performing 

the transformation is used. 
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3 .  Sequential operations for connected component dis- 
crimination 

This section describes a set of sequentially applied 

local operations which "labels" the connected components 

of any given picture subset. For simplicity, it is 

assumed that the given subset consists of picture ele- 

ments which have value 0, while every other element has 

value 1. The results canbe immediately extended to 

subsets consisting of elements which have any given pro- 

perty; it suffices to first transform the picture using 

the characteristic function of the complementary property. 
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3.1. Connectivity 

A subset of a d ig i t i zed  p i c tu re  w i l l  be ca l l ed  

connected i f  f o r  any two points  P and Q of the subset 

there e x i s t s  a sequence of po in ts  P=P~,P~,P~,...,P~-~,P~=Q 

such that  P i i s  a neighbor of P i-1' 1Siln.  

the set of shaded po in t s  and the  se t  of unshaded po in t s  

a r e  both connected; i n  Figure lb ,  t he  shaded poin ts  are 

connected bu t  t h e  unshaded po in t s  are not: i n  Figure IC, 

the unshaded poin ts  are connected bu t  t he  shaded po in t s  

are not .  For these  examples, t he  d e f i n i t i o n  agrees with 

the i n t u i t i v e  concept of connectivity.  On the other  

hand, both the shaded and unshaded points  i n  F igu re  I d  

are connected, which runs counter t o  i n t u i t i o n .  T h i s  

r e s u l t s  from t h e  f a c t  t h a t  a point  is  connected t o  any 

of i t s  e igh t  neighbors, including t h e  diagonal ones. 

I f  connect ivi ty  w e r e  redefined t o  require  t h a t  P be one 

of the four  ho r i zon ta l  and v e r t i c a l  neighbors of Pi - 1, 
both the shaded and unshaded poin ts  i n  Figure 1 would 

become disconnected, which i s  s t i l l  not cons is ten t  

with i n t u i t i o n .  T h e  "paradox" of Figure I d  can be re- 

phrased as follows: I f  the ''curve'' of shaded poin ts  i s  

connected ( "gapless") ,  it does not disconnect i t s  

i n t e r i o r  from i t s  ex te r io r ;  i f  it is  t o t a l l y  disconnected, 

it does disconnect them. I n  s p i t e  of t he  paradoxes as- 

soc ia ted  w i t h  t h i s  neighborhood d e f i n i t i o n  of connect ivi ty ,  

it i s  s t i l l  a u se fu l  concept; paradoxes arise only when 

the connect ivi ty  of i so l a t ed  s t r i n g s  of diagonally adja- 

cent  elements is considered. 

I n  Figure l a ,  

i 

I n  general ,  a subset of a p i c tu re  (say the subset 

of "0" po in t s )  cons i s t s  of a nuniber of connected p a r t s  

or  components.* T h e  problem of d is t inguish ing  among these  

*Formally, these components are t h e  equivalence c l a s ses  
of p i c t u r e  poin ts  defined by the r e l a t i o n  'lis connected 



( c )  

Figure 1. Examples of Connected and  Non-connected Sets 
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components w i l l  now be considered. Spec i f i ca l ly ,  it i s  

des i red  t o  construct  a transformed p ic tu re  i n  which the 

" 0 "  po in t s  have new values v l , .  . . , v  (pos i t i ve  in t ege r s  

each > l), two poin ts  having the same value i f  and only 

if they belong t o  t h e  same connected component of " 0 "  

po in t s  on the o r i g i n a l  p ic ture .  

k 

Neighborhood operations lend themselves na tu ra l ly  

t o  the  study of connect ivi ty ,  s ince  it i s  defined i n  

t e r m s  of neighbors. I f  t h e  operations are appl ied i n  

p a r a l l e l ,  it is not easy t o  d is t inguish  among connected 

components, s ince  t h e  p a r a l l e l  operations t r e a t  every 

poin t  of the given set iden t i ca l ly .  Using sequent ia l ly  

appl ied operations,  however, one can ' ' t rack" each con- 

nected region,  ass igning a value t o  each poin t  of it 

as  t h e  t racking  proceeds. If t w o  of t he  tracked regions 

merge, a spec ia l  value i s  assigned. Further processing 

i s  then  applied t o  these  spec ia l  values so a s  t o  eliminate 

redundant values from the  p i c tu re .  

I n  t h e  next subsection a set  of sequent ia l  l o c a l  

operat ions i s  defined which assigns t o  every point  of 

each connected region on the p i c t u r e  a value which " labe ls"  

the region. I n  the  following subsection a computer pro- 

gram i s  described which generally follows t h i s  sequence 

of operations bu t  which does not adhere s t r i c t l y  t o  the  

requirement t h a t  only loca l  operations a r e  permitted,  and 

which i n  consequence is  considerably more e f f i c i e n t .  

t o "  ( t h a t  is: "is a neighbor of a neighbor ... of a 
neighbor of ' I ) ,  which i s  evident ly  an equivalence r e l a t ion .  
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3.2. Sequential operations for determininq connected 
components of a picture 

In the discussion below, it is convenient to apply 

neighborhood operations to the picture using more than 
one element sequence. The following four sequences are 

particularly useful: 

(1) The forward raster sequence: (l,l), .. ., (l,n), 
(2,1), . . . , (2,n), . . . , (m, l), .. . , (m,n) as in 
Section 2.3 

(2) The backward raster sequence: (m,n), . . . , (m,l), 
(m-l,n), ...( m-l,l), ...,( l,n), ...( l,l), the exact 

reverse of (1) 

( 3 )  The forward zigzag sequence: (1,l) ,..., (l,n), 
(2,111, . , ( 2 , 1 ) ,  (3,1), ..., (3,n), .., (m,l), . - - ,  
(m,n) if m is odd; ...,( m,n), ...,( m,l) if m is 

even 
( 4 )  The backward ziqzaq sequence: The exact reverse 

of (3) 

We begin by defining a local operation f which, 

when it is applied to the picture (a , )  in forward raster 

(or zigzag) sequence, 
i, 3 

(a) Leaves the 1's in the picture unaltered 

(b) Tags each "new" 0 (that is, each 0 which has 

only 1's as predecessor neighbors*) with a unique 

label 2 3 (these values are clearly all distinct 

for all EiZm, lZjSn). Such a picture element 

is potentially part of a new connected component. 

i j  

(c) Tags each 0 whose predecessor neighbors all have 

*For the forward raster sequence, the "predecessor neighbors" 
of a are a i-1,j-1 ,a i-1,j' i-1, j+l 
or whichever of them exist. 

i, j-1' a and a 
i, j 
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t h e  same l a b e l  with t h a t  l a b e l ,  ind ica t ing  t h a t  

it too is p a r t  of t h a t  connected component 

Tags each 0 whose predecessor neighbors have 

two d i f f e r e n t  l abe l s  with the  spec ia l  l a b e l  

2 3 5 7 , ind ica t ing  t h a t  the  two labels 

2 3 and 2 3 a re  redundant s ince  the  two ''con- 

nected components'' which they represent  have 

merged. (I t  w i l l  be shown below t h a t  t h e  pre- 

decessor neighbors cannot have more than two 

d i f f e r e n t  l abe l s ,  so  t h a t  cases (a-d) exhaust 

a l l  p o s s i b i l i t i e s . )  

a b c d  

a b  c d  

Spec i f i ca l ly ,  f o r  a l l  a . i n  the p i c tu re ,  f ( a i , j )  i s  

an in teger  of t he  form 2 3 5 Y 7 where 

a )  I f  a i , j= l ,  then w=x=y=z=O, s o  t h a t  f ( a i , j ) = l  

L J  then w = i ,  x=j,  y=z=O, so t h a t  f (ai , )=2  3 
# I  

c)  I f  ai,j=O and case (b) does not apply, b u t  t he re  

e x i s t s  a p a i r  of p o s i t i v e  in t ege r s  (a ,b)  such 

t h a t  each of these f ' s  i s  e i t h e r  1 or  2 3 5 7 or 

2 3 5 7 f o r  some h , k  or p ,q ,  then w=a, x=b, y=z=O, 

so that f ( a  . ) = 2  3 

a b h k  

p q a b  
a b  

i, 3 

d )  I f  ai =0, and cases (b-c) do not apply, b u t  

t h e r e  e x i s t  two p a i r s  of pos i t i ve  in t ege r s  ( a , b )  

and ( c ,d )  such t h a t  each of these  f's is  e i t h e r  

1, 2a3b5h7k, 2C3d5P7q, 2S3t5a7b, or 2 3 5 7 , 

then w = a ,  x=b, y=c, z=d, so t h a t  f (ai, j ) = 2  3 5 7 

u v c d  

a b c d  

* S t r i c t l y  speaking, i n  de f in ins  f w e  should speak of these 
four elements, r a the r  than t h e i r  f ' s ,  a s  being 1. For 
t h e  sake of c l a r i t y ,  however, the  d e f i n i t i o n s  given i n  
t h i s  s ec t ion  descr ibe the r e s u l t s  of applying f i n  sequence, 
so t h a t  when f is being appl ied t o  a i r j ,  it has already 
been appl ied t o  these  four elements. 
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Lemma. When f is applied to a picture in forward raster 

sequence, cases (a-d) are the only possibilities. 

Proof: 

5 and 7 dividing the four predecessor neighbor f's can 

never be different to the point where even case (d) does 

not apply. 

and suppose that the Lemma is true for all elements pre- 

ceding a . Since a is a predecessor neighbor 
of a , one of the following possibilities must hold: 

We must show that the highest powers of 2 and 3 ,  

Let these f's be 2 w1 3 x1 5 Y 17'l, ..., 2w43x45y47z4, 

i, j i-1, j-1 

i-1, j 

Similarly, since a is a predecessor neighbor of 

'i-1, j+ l '  
w2,x2 or y2, z2=w3, x3 or y3,z3; and since a i-1, j is a 

predecessor neighbor of a if neither f is 1 we i, j-1' 
must have w 2,x2 or y2,z2'w4,x4 or y4,z4. 

f(ai-1, j )#1 we can take a,b,c,d=w 2 ,x 2'y2'z2 (ignore the 

c,d if y 2 2  =z =O). Furthermore, since a i-1, j-1 is a pre- 

decessor neighbor of a 

is 1 we have w l,xl or.y1,zl=w4,x4 or y4,z4. 
be the common pair, c,d=either of w 38x3 or y3,z3 to 
cover the case where f(ai 

trivially true for a 

completes the proof. 

i-1, j 
if neither of their f's is 1 we must have 

Hence if 

if neither of their f's 

Let a,b 
i, j-1' 

. )=1. Since the Lemma is - # I  
(indeed, for any a . ) ,  this 

1,1 111 

The Lemma shows that the forward raster sequence 

application of the function f to the picture (a , )  is 

well defined. The resulting transformed picture now has 

one or more unique labels of the form 2 3 designating 

the points of each connected component, and special labels 

i,l 

a b  
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a b c d  of the form 2 3 5 7 designating po in t s  w h e r e  two of 

these "subcomponents" merge, ind ica t ing  t h a t  one of their  

labels i s  redundant. 

It  now remains t o  f u r t h e r  process the  p i c tu re  so a s  

t o  e l iminate  a l l  t h e  redundant l abe l s .  This w i l l  be done 

as  follows: For each l abe l  of t he  form 2 3 5 7 i n  the 

p i c t u r e ,  a l l  2C3d's and 5C7d ' s  are systematical ly  replaced 

by 2 3 s .  Each t i m e  th is  i s  done, the number of l a b e l s  

2 3 which a r e  redundant w i t h  o ther  l a b e l s  is reduced by 

one. A s u f f i c i e n t  number of r e p e t i t i o n s  of t h i s  process 

thus  eventually e l iminates  a l l  redundancies, leaving j u s t  

one unique label f o r  each connected component. 

a b c d  

a b' 
c d  

W e  proceed by defining two sequences of functions 

( r = 1 , 2 ,  ...). These funct ions w i l l  operate a s  follows f r l g r  
on the p ic ture :  

Nothing is  done u n t i l  the f i r s t  element which 

shows a redundancy (i .e. ,  which i s  d i v i s i b l e  by 

5 )  and which has not been processed by t h e  pre- 

ceding f ' s  and g ' s  i s  reached: l e t  t h i s  element 

be 2 3 5 7 e ,  where 2 ,3 ,5 ,7  do not divide e 

The value of t h i s  element i s  divided by 5 7 , 
el iminat ing t3e redundant l a b e l  ( c , d ) .  

This and a l l  subsequent elements ( i n  the  sense of 

t h e  forward zigzag sequence) are tagged by multi- 

plying t h e i r  values by n r ,  a product of four 

primes not previously used a s  t ags ,  r a i sed  t o  

t h e  exponents a , b , c , d ,  respec t ive ly .  This pro- 

cedure "carries" the values a , b , c , d  t o  all sub- 

sequent po in t s  of the p ic tu re  so t h a t  they can 

be used f o r  processing these po in t s  a s  necessary. 

Whenever an element i s  found whose o r i g i n a l  l abe l  

involves ( c , d ) ,  it i s  replaced by ( a , b ) .  This 

a b c d  

c d  
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completes the appl icat ion of f t o  t he  p ic ture .  

d )  A l l  preceding elements (=subsequent elements i n  
r 

t h e  sense of the backward zigzag sequence) a r e  

then processed as  i n  s t e p  ( c ) .  This cons t i t u t e s  

the appl ica t ion  of g . 
r 

Spec i f i ca l ly ,  f , defined a s  follows, i s  applied t o  r 
t h e  p i c t u r e  i n  forward zigzag sequence: 

(the 4 r + l  a )  I f  a i s  not d i v i s i b l e  by 5,  and p 
i , j  

4 r + l s t  prime) does not d iv ide  any of the  f ' s  

of i t s  predecessor neighbors ( i n  the sense of the 
r 

forward zigzag sequence), then f r ( a i ,  j ) = a  i, j 
b)  If a . i s  d i v i s i b l e  by 5, and p does not 

d iv ide  any of these fr's, l e t  a .  <=2 3 5 7 e ,  
4r+1a b c d 1 8 1  

A I  J .L 

where 2,3,5,7 do not  d iv ide  e; then f (a ,  ) =  
11 7 

a b  a b a  b C d 
P4r+lP4r+2P4r+3P4r+4 (=2 3 ~-r f o r  s h o r t )  r 

does divide one of these f I s ,  l e t  

a .=2 3 5 7 e, where 2,3,5,7 do not d i v i d e e ;  then 
c, If '4r+l r w x y z  

i, 3 
)=a n (1) I f  ne i ther  (w,x) nor ( y , z ) = ( c , d ) ,  f r ( a i ,  i , j  r 

a - c  b-d 2 3 a 1 - r  i , j  r 

a-c7b-da 
TT i , j  r 5 

(4 )  I f  (w,x)=(a,b)  and ( y , z ) = ( c , d ) ,  f (ai ,  j ) =  r 
-C -d 5 7 a  ~-r i , j  r 

a-c3b-d -a -b 
2 ai , j?Tr 
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defined a s  gr 1 
A f t e r  f h a s  been applied t o  the p i c tu re ,  r 
fol lows,  i s  then applied i n  backward zigzag sequence: 

d iv ides  a . I then gr (a i l  )=a  . 

does not  divide a 
a )  If '4r+l i ? l  i , l  

but  does divide one i , j '  b, If '4r+l 
of the g r ' s  of i t s  predecessor neighbors i n  the  sense 

of the  backward zigzag sequence, then proceed exact ly  

a s  i n  p a r t  (c) of the d e f i n i t i o n  of f . r 

t o  the p i c tu re  in-  mn '  gmn AppW-ng f l ,  gl' f 2 '  g2?".1 f 

sures  t h a t  every redundancy has  been eliminated, s ince  there  

cannot be more redundancies than p i c tu re  elements ( i n  f a c t ,  

t h e r e  must be considerably f e w e r ) ,  and each ( f  , g  ) cycle  

e l imina tes  a t  l e a s t  one redundancy. W e  have thus shown 

t h a t  t h e  des i red  t a sk  of tagging each connected component 

of the p i c t u r e  w i t h  a unique l abe l  i s  accomplished by 

the  following sequence of l o c a l  operations:  

r r  

f i n  forward r a s t e r *  sequence 

f i n  forward zigzag sequence 1 
i n  backward zigzag sequence 91 

f i n  forward zigzag sequence mn 
i n  backward zigzag sequence gmn 

Note t h a t  i n  p rac t i ce  the t a sk  w i l l  be completed long before 
t h  

the mn cycle ,  and the remaining cycles w i l l  not  change the 

p i c t u r e  a t  a l l .  However, t h e r e  i s  no easy way of detect ing 

t h e  completion if only sequent ia l  l o c a l  operations are per- 

m i t t e d .  

*or zigzag 
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3 . 3 .  Programminq considerat ions 

A p r a c t i c a l  computer program fo r  determining con- 

nected components along the l i n e s  described above need 

not be a s  e laborate ,  since i t  need not r e s t r i c t  i t s e l f  

t o  l o c a l  operat ions alone. Some immediate shortcuts ,  

once o ther  types of Operations a r e  permitted,  include 
the following: 

a .  The ''redundancies'' can be s tored a s  a t ab le  

' 'outside" the p i c tu re ;  t h i s  g rea t ly  reduces 

s torage requirements . * 
Elimination of redundancies can be performed 

by processing this tab le .  When t h i s  has  been 

done, the  redundant p i c tu re  element l abe l s  

can be " t rans la ted"  i n t o  irredundant ones a s  

the very l a s t  s tep,  by making one scan of the 

p i c t u r e ,  "looking up" each value i n  the pro- 

cessed t ab le  and subs t i t u t ing  the equivalent 

irredundant value i f  d i f f e r e n t  f r o m  the given 

value . 

b. 

c .  The t ab le  can be processed i n  many fewer s teps  

than a r e  required to  process redundancies w i t h -  

i n  the p i c tu re ,  s ince (1) the  t ab le  i s  i n  general  

much smaller ;  ( 2 )  when a redundancy i s  being 

' 'reduced," it need not  be "carr ied ' '  through the 

t ab le  i n  the f o r m  of  a s e t  o f  high prime powers, 

s ince processing i s  not constrained t o  neighbor- 

hoods within the t ab le ;  ( 3 )  i t  i s  easy t o  s top 

*Since aux i l i a ry  tab les  which contain s tored information 
about the p i c t u r e  a r e  used i n  t h i s  and the following s t eps ,  
the  operat ions performed a r e  no longer l o c a l ;  the tab le  
makes ava i lab le  information about p i c tu re  elements which 
a r e  not  neighbors of  the element being processed. 
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the  processing when the t ab le  i s  exhausted, 

r a the r  than bl indly repeat ing it mn times. 

d. The l a b e l s  used can simply be consecutive i n -  

t egers ,  i f  a count i s  kept  ou ts ide  the p i c tu re  

so t h a t  no l abe l  i s  used twice; there  i s  no 

need t o  use cumbersome prime power products 

indexed t o  the picture  element coordinates to  

i n s u r e  uniqueness. 

I n  the l i g h t  of these s impl i f ica t ions ,  a program 

f o r  connected component determination can proceed a s  

follows: 

(1) Apply the function f t o  the p i c tu re  i n  forward 

r a s t e r  sequence, where 

a )  If ai ,  j=l , f (a i ,  j)=l 

b) I f  a i r j = 0 ,  and a l l  of f ( a i  - l , j  - 1 ,  f ( a  i -1 ,  j 1 ,  
)=l, then f ( a i t j ) =  

i, j-1 ) and f ( a  (ai-l, j + l  
the  f i r s t  l abe l  value not y e t  used 

c) If ai ,  j = O ,  and a l l  of these f ' s  which # 1 

a r e  the same, f ( a i t j ) = t h a t  same l abe l  value 

d) I f  airj=O, and two of these f ' s  # 1 and a r e  

d i f f e r e n t ,  f (a i ,  j ) = t h e  smaller of the two 

l a b e l  values. I n  t h i s  case the p a i r  of l abe l  

values i s  stored i n  the f i rs t  unused space 

i n  an auxi l ia ry  t ab le ,  w i t h  the smaller value 

f i r s t .  

( 2 )  Process the table  a s  follows: 

a )  Order the pa i r s  lexicographical ly  ( i n  order 

of increasing f i r s t  value,  and for  each of 

these,  i n  order of increasing second value) 
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b) Let the f i rs t  p a i r  of values be A,B.  Scan 

the t ab le  and replace every B by an A .  Store  

the p a i r  (A,B)  i n  a second aux i l i a ry  tab le  

(which w i l l  be used to  r e l abe l  the p i c tu re  

components i n  s t ep  ( 3 ) )  and erase the f i rs t  

p a i r  

c )  Reorder the remaining p a i r s  lexicographical ly  

and w i t h  smaller term f i r s t ,  erasing a l l  p a i r s  

whose terms are  equal 

d) Repeat s t eps  (b-c) u n t i l  every p a i r  has been 

processed and erased. The second t ab le  now 

contains  a s e t  of p a i r s  of the form 

which a r e  ordered lexicographical ly .  The 

A ' s  i n  t h i s  tab le  cons i s t  of one representat ive 

( t h e  smallest)  from each equivalence c l a s s  

of redundant values ,  and the B i j ' s  ( a l l  d i s -  

t i n c t )  a r e  the remaining elements of the c l a s s  

represented by Ai. 

( 3 )  Scan the p ic ture  i n  any sequence, comparing each 

element 's  label  value with the B ' s  i n  the second 

tab le .  Replace each B i n  the p i c tu re  by the 

corresponding A. ( I f  desired,  gaps i n  the sequence 

of l a b e l s  can be "closed up" before  output . )  

Note t h a t  t h i s  program cons i s t s  bas i ca l ly  of a s ing le  

sequent ia l ly  appl ied local  operat ion ( s t ep  (l), except 

t h a t  the redundancies a re  s tored outs ide  the p ic ture  to  

s implify the remaining s t e p s ) ,  followed by sequent ia l  
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processing of the tab le  and sequent ia l  re label ing of the 

p i c tu re .  The approach i s  s t i l l  e s s e n t i a l l y  sequent ia l ,  

even though f o r  s implici ty  the r e s t r i c t i o n  t o  ' 'pure" 

neighborhood operat ions has been relaxed. 

A n  IBM 7090/94 program along these l i n e s  has  been 

wr i t t en  and t e s t ed .  The program, o r i g i n a l l y  wr i t t en  i n  

the FAP symbolic assembly language, has been adapted so 

t h a t  it can be ca l l ed  a s  a FORTRAN subroutine. I t  accepts 

a s  input  a d i g i t a l  p ic ture  on magnetic tape. Each record 

on the tape contains  information about one r o w  of the 

p i c tu re .  A p i c tu re  element can have any value from 0 t o  

2 -1, and each row can cons is t  of up to  2000 elements. 

The number of rows i s  l imited only by the capacity of 

the tape.  

6 

The program s e l e c t s  any prespec i f ied  rectangular  sub- 

p i c t u r e  (rows r through r+u, columns s through s + ~ ,  f o r  

example). I t  ' ' s l i ce s"  the p i c tu re  element values between 

(Ozt 't <2 -I), t r e a t -  any two prespec i f ied  l eve l s  t 

ing a l l  values between tl and t2 a s  " 0 "  and a l l  values 

outs ide  the range a s  "1". The program then proceeds t o  

l a b e l  the  connected components of the s e t  of 'ID"s e s s e n t i a l l y  

a s  described above. The l a b e l s  used f o r  processing a r e  

simply the in tegers .  For p r in tou t  purposes, only the 46 

d i s t i n c t  l a b e l s  

6 
1' t2 1- 2 

ABCDEFGHIJKLMNOPQRSTVwXYZl23456789+-/='.)$*,( 

a r e  used, i n  t h a t  order .  I f  there  a re  more than 46 con- 

nected components, these symbols a r e  used over and over 

again,  a s  many times as  necessary.  

of alphanumerics i n  which the symbol pr in ted  a t  each " 0 "  

The output i s  a matrix 
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poin t  i s  the l a b e l  of  the connected component which con- 

t a i n s  the poin t ;  "1" points  a r e  l e f t  blank. A labeled 

vers ion of the p i c tu re  i s  a l so  wr i t ten  on tape f o r  input 

t o  succeeding processing rout ines .  

A n  example of a simple p i c tu re  input  t o  the program 

i s  shown a s  Figure 2 ( " l "=black ,  "O"=white). The corres-  

ponding output  f o r  t h i s  p ic ture  i s  shown a s  Figure 3 .  I n  

t h i s  p i c tu re ,  the  component labeled I ,  f o r  example, had 

two l a b e l s  i n  the o r ig ina l  processing. The redundancy of 

these l a b e l s  was detected when the scan reached the "I" 

element which i s  c i r c l e d  on the Figure. Component D 

obviously had many l abe l s  o r i g i n a l l y ,  while components 

A and C had unique l abe l s  throughout the processing. 



F i g u r e  2 .  P i c t u r e  I n p u t  to  P r o c e s s i n g  Programs 
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4 .  Sequential  operat ions for ' 'distance" determination 

Several inves t iga tors  over the pas t  decade have con- 

s idered p i c tu re  transformations i n  which a given subset i s  

"propagated" over the p ic ture ,  o r  dua l ly  i n  which the sub- 

s e t  i s  examined by an expanding ar ray  of sensors. 

l a t t e r  approach see Harmon[ 5 1  and S inge r [  6-81: compare 

a l s o  Stevens [ 93.) .  

cessing (Kirsch [ 2 ]  ) ,  a transformation of t h i s  type was 

performed by a sequence of l o c a l  operat ions performed i n  

p a r a l l e l ;  t h i s  approach requires  two operat ions fo r  each 

incremental propagation step.  More recent  discussions of 

t h i s  type of  transformation and i t s  implicat ions f o r  shape 

descr ip t ion  may be found i n  several  papers by B l u m  ( 110-12 1 ;  
see  a l s o  Kotelly 1131 ), who a l so  considers the possible  

(For the 

I n  ear ly  work on d i g i t a l  p i c tu re  pro- 

, 

r o l e  of such transformations i n  v i sua l  form perception. 

"Propagating" a subset over a p i c tu re  i s  tantamount 

t o  f inding the "dis tance",  i n  the sense of the propagation 

process ,  between the subset and each poin t  of the p i c tu re .  

I n  t h i s  sect ion a simple ' 'distance" concept, appropriate  

t o  d i g i t i z e d  p i c t u r e s ,  i s  introduced, and a transformation 

i s  defined which determines the d is tance  from every p i c tu re  

element t o  a given subset. 
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4.1. Distance 

L e t  P and Q be any t w o  d i s t i n c t  po in t s  i n  a d i g i t i z e d  

p i c t u r e ,  and l e t  d*(P ,Q)  be the smallest p o s i t i v e  integer  

such t h a t  there  e x i s t s  a sequence of  d i s t i n c t  po in ts  

P=Po, pl,. . . , P =Q w i t h  P .  a neighbor of P E i S n .  
n 1 i-1, 

This d* i s  c a l l e d  the dis tance from P t o  Q ;  i f  P=Q, the 

distance between them i s  defined a s  zero. The d is tance  

from P t o  a given subset  S of the p i c t u r e  i s  defined a s  

the smallest  of  the  dis tances  from P t o  the poin ts  i n  S. 

Like connect ivi ty ,  the dis tance concept i s  defined 

by i t e r a t i n g  the property of being a neighbor. H e r e ,  how- 

ever ,  the minimum number of i t e r a t i o n s  required t o  "reach" 

Q from P i s  of i n t e r e s t ,  whereas i n  the case of connect ivi ty ,  

t he  question considered was whether Q could be ''reached" a t  

a l l  from P using only poin ts  i n  a given subset a s  intermediate 

po in t s .  As was pointed out  f o r  connect ivi ty  i n  Section 3.1,  

a "dis tance" can a lso be defined using only hor izonta l  and 

v e r t i c a l  neighbors a s  "s teps" .  I f  d(P,Q) i s  the dis tance 

f r o m  P t o  Q using t h i s  more r e s t r i c t e d  d e f i n i t i o n ,  i t  i s  

clear t h a t  dSd*. For s impl ic i ty ,  the restricted de f in i t i on  

w i l l  be used i n  the remainder of t h i s  paper. 

Evidently,  d(P,Q) (and s imi l a r ly  f o r  d*) has a l l  the 

p rope r t i e s  of a metric*. I t  should be emphasized, however, 

that  d i s  not  even approximately the Euclidean dis tance.  

I n  f a c t ,  the locus of po in ts  a t  a given "dis tance" dyO from 

a given po in t  P i s  a diagonally or ien ted  square of side d + l  

centered a t  P ,  rather than a circle*? 

*It i s  p o s i t i v e  d e f i n i t e  b y  d e f i n i t i o n ,  and i s  c l e a r l y  symmetric 
(the r eve r sa l  of a sequence from P t o  Q i s  a sequence from Q t o  P 
and v i ce  ve r sa ) .  Moreover, s ince  any two sequences from P t o  Q 
and Q t o  R ,  respect ively,  can be put  end t o  end to  give a sequence 
from P t o  R ,  it evidently s a t i s f i e s  the  t r i a n g l e  inequal i ty .  

** For the  metric d*, the corresponding locus i s  a square of 
s ide  2d+l, centered a t  P and or iented hor izonta l ly  and v e r t i c a l l y .  
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4 . 2  The d is tance  transformation 

Given a d i g i t i z e d  p ic ture  whose elements have only the 

values 0 and 1, i t  is  desired t o  cons t ruc t  a "dis tance transform" 

of the p i c tu re  i n  which each element has  an integer  value equal 

t o  i t s  d is tance  from the se t  of 0's. ( I t  i s  assumed t h a t  the 

s e t  of 0's i s  nonempty.) 

unchanged, s ince  they a r e  a t  zero dis tance from themselves: 

the 1's which a r e  horizontal  o r  v e r t i c a l  neighbors of 0 ' s  a l so  

remain unchanged; the 1's which a r e  hor izonta l  o r  v e r t i c a l  

neighbors of such 1's become 2 ' s ;  and so on. 

Thus i n  p a r t i c u l a r ,  the 0's remain 

This transform can be performed using j u s t  two sequent ia l ly  

appl ied l o c a l  operat ions a s  follows: Let 

1,1=l mCn i f  ( i , j ) = ( l , l )  and a 

+I 1 i+l,j+'# a i ,  j + l  )%in (a a 
f 2 ( a i , j  i , j ,  

1 Theorem. Let C = ( c  . )  be the p i c tu re  which r e s u l t s  when f 

i s  appl ied t o  the  p i c tu re  A = 

followed by f i n  backward r a s t e r  sequence. Then C i s  the 

d is tance  transform of A .  

i , l  
) i n  forward r a s t e r  sequence, (ail j 

2 

Proof: Note f i r s t  t h a t  i f  a .*l and a horizontal  o r  v e r t i c a l  

neighbor of a i s  zeio, evident ly  c =1, and conversely. 

Suppose now t h a t  c .  i s  equal t o  the dis tance from the (i, j) 

element to  the c l o s e s t  zero element i n  A f o r  a l l  ( ill) such 

t h a t  t h i s  d is tance  < k. L e t  B = ( b  , )  be the p i c tu re  which 

r e s u l t s  from applying f i n  forward r a s t e r  sequence t o  A .  

L J  

i l l  i , j  

. , j  

i , l  

1 
=k, by the induction hypothesis the d is tance  f r o m  

If ' i l j  
the  ( i , j )  element t o  the neares t  zero must  be a t  l e a s t  k .  
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I f  i t  i s  g r e a t e r  than k ,  by d e f i n i t i o n  of d i s tance  i t  must 

be a t  l e a s t  k f o r  each of the ( i , j )  e lement 's  hor izonta l  

and v e r t i c a l  neighbors. I n  p a r t i c u l a r ,  c and c 

each k, so t h a t  c .=k implies b .=k by d e f i n i t i o n  of f 2  
i + l ,  j i ,  j+l 

i t 1  i f 1  

o r  b i, j-1, say the former, must be k-1 by But then b i-1, j 
d e f i n i t i o n  of f SO t h a t  c 2 - 1  I contradict ion.  1' i-1, j 

The d is tance  transforms f o r  a c i rc le ,  two rectangles*,  

and regions F, J. and K of Figure 3 a r e  shown a s  Figure 4.  

These transforms i l l u s t r a t e  the output of  an IBM 7090/94 

program, w r i t t e n  i n  FORTRAN, which accepts input  d i g i t a l  p i c tu re  

d a t a  as  described i n  Section 3 . 3 .  For s impl ic i ty ,  only the odd 

d i s t ance  values are  pr inted ou t  modulo 1 0 ,  w h i l e  tne even values 

are  l e f t  blank; the poin ts  w i t h  value zero are pr in ted  a s  X ' s .  

*Each of  the rec tangles  is 1.1 by 1.8 inches,  quantized 
10  elements t o  the  i n c h ;  the d i f fe rence  between t h e i r  
shapes i n  the Figure r e s u l t s  from the unequal hor izonta l  
and v e r t i c a l  s i z e  of a character  space on the p r i n t e r .  
The circle appears d i s t o r t e d  f o r  the same reason. 



x x x x x x x x x x x x x x x x x x  X 
X l l l l l l l l l l l l l l l l X  x1x  
X l  1 x  x 1  1 x  
x 1  333333333333  1 x  X l  3 1 x  
x 1  3 3 1x x 1  3 3 1x 
x 1  3 55555555 3 1 x  X I  3 5 3 1 x  
X l  3 3 1x A 1  3 5 5 3 1 x  
X l  333333333333  1 x  x 1 3  5 7 5 3 1 x  
X l  1 x  x 1 3 5 7 5 3 1 x  
X l l l l l l l l l  A l l l l l l X  x 1 3  5 7 s 3 1 x  
x x x x x x x x x x x x x x x x x x  X l 3  5 7 5 3 1 x  

x 1 3  5 7 5 3 1 x  
x 1 3  5 7 s 3 1 x  

x 1  3 5 5 3 1 x  
X l  3 5 3 1 x  

x x x x x x x x  x 1  3 3 1 x  
x x x x x x x x x x x  x 1  3 1 x  

X X X l l l l l l l l l X X X  x 1  1 x  
X X X l l  A l X X X  x 1 x  

X X l l  333333333 l l X k  X 
x x 1  33  33  1 X X  

x x 1  3 3  555555555  3 3  1 x x  
x x 1  3 5 5  55  3 1 x x  

x x 1  3 55 771777777 55 3 1 x x  
x x 1  3 5 -17 77 5 3 1 x x  
x x 1  3 5 7 999999999  7 5 3 1 x x  
x x 1  3 5 7 Y 9 7 5 3 l X  

x x 1  3 5 7 9 1111111 9 7 5 3 1 x x  
x x 1 3 5 7 9 1  1 9 7 5 3 1 x x  
x x 1  3 5 7 9 1 333 1 3 7 5 3 1 x x  
x x 1 3  5 7 9  1 3  3 1 9  7 5 3 1 x x  
x x 1  3 5 7 9 1 333 1 9 7 5 3 1 x x  

x x 1  3 5 7 9 1 1 9 7 5 3 3 x x  
X X L  3 5 7 9 11111 9 7 5 3 1 x x  
X X l  3 5 7 9 Y9 7 5 3 1 X X  

xI(1 3 5 7 999999 7 5 3 1 x x  
x x 1  3 5 77 777  5 3 1 x x  

X X l  3 5 777777 5 5  3 1 x x  
X X L  3 55  5 5 5  3 1 x x  

x x 1  3 3  555555 3 3  1 x x  
x x 1  33 3 3 3  1 x x  

X X l l  3 3 3 3 3 3  l l X X  
X X X l l  l l l X X X  

xxx11111 L X X X X X  
x x x x x x x x x x x  

x x x x x x  

F i g u r e  4 .  Sheet 1 - D i s t a n c e  
Transforms of Two Rec tang le s  
and a C i r c l e  



X X X X X X A A  X A  X X X  
x x x x x x x x x * x  x x  X X X A  

x x x x  x * x  x x x  x x x  
x x x x  x x x  A X  X I *  

x x x x  x x x  x x x  I X X X  
x x x  x x x x  x x x  X A X X  X X  

X X X  x x x  x x x  x x x x  X X X X X  
X A X  x x x  x x  x x x  x x x x x x x  

x x x x  x x x x  x x x  x x x  x x x  x x x  
x x x  x x x  x x x x  x x x  x x  x x x x  

x x x  x x x  x x x  x x x x  x x x  I X X  
Z X X  x x x  x x x  X I X  x x x  x x  

x x x x x  X X I X  x x x  x x x  x x x x  x x x  
X X X  x x x  x x  x x x x x  x x x  x x  

A X X X  x x x  x x x  x x x x x  x x  X X X  
x x x x  x x x x  x x x  x x x x x  x x x  x x  
x 1 x  x x x x  x x x  x x x x x x  x x  X X X  
x x  X X X X  x x  x x x x x  x x x  X X X  
A x x x x  x x x  x x x x x  x x  x x x  
X x x x x  x x x  x x x x  x x x  xxx  

x x x x  x x x  x x x x  x x x x x x  
x x x  x x  x x x  x x x x  

x x x x  x x x  x x x x  X 
x x x x  x x x x  x x x x  

A X X X  x x x x x x x x x x x  
X X X X  x x x x  X X X X X I  

X X X X  x x x  x x x x  
X X X A  x x x  x x x x  

x x x x  x x x  x x x  
x x  x x x x  
X x x x x x  

x x x x x  
x x x x x  

X X X X X  
x x x x . 4  

x x x x x  
X X X X X  

x x x x x  
X X X X X  

X X X X X X  
X X X X X  

x x  
x x x  
x x x  
x x x  
x x x  

x x x x  
x x x  
x x x  
x x x  

x x x x  
x x x x x  
x x x x  

x x x x x x  
x x x x x x x x x x  

x x x x x x x x x x x x x  
X X X X X l  I L l X X X X X  

X X X X l l  L l X X X X X  
X X X X l  3 3 3 3  l l X X X X  

X X X X l  3 3  33 l X X X  
X X X l l  3 5 5 5 5  3 3  1xxx 
X X X l  3 5 5  55 3 L X X X  

X X X l  3 5 7 7 7 7  5 5 I X X  
X X X X l  3 5 7 7 5 3 1 X A X  
X X X l  3 5 7 9 9 9  1 5 3 l x x x  
x x x 1  3 5 7 9 7 5 3 l X X X  

X X X l  3 5 7 7 7  5 5  3 L X X X  
X X X l  33 5 7 5 5 5 5  35 L X X X  
X X X X l  3 5 5 5  3 3  L X X X X  

X X X X l l  3 5 3 3 3 3  1 1 x x x x  
X X X X X l  3 33 11xxxxx  

X X X X X l  3 I l I I X X X X X X  
X X X X X l  I I X X X X X A X X X  

x x x x x l x x x x x x x x x  

x x x x i  3 5 7 m i  5 3 IXXX 

X X X X X X X X X X X h  
x x x x x x x  

x x x x  
x x x  

x x x x x x x  
x x x  x x x x  

x x x  X X X  
x x x  x x x x  
x x  x x x x  

xaaxx 

x x x x x x  
X x X X X X X X K X X X  

X I X X X X X X X X X X X X  
x x x x x x x x x x x x x x x *  

X X X A L L L L 1 I I I I X X X X  
X X X l l  I l X X X  

X X X X l  3 3 3 3 3 3 3 3 3  I X x A x  
X X X L  3 3 I X X X X  

I X X 1  3 5 5 5 5 2 1 5  3 l X X X  
X X X X I  3 5 5 3 1 x x x  

X X X X l  3 > 7 7 7  J 3 I X X X A  
X X X l  3 5 7 7 '1 3 I h X X  I 
X X X l  3 5 7 7 5 3 L X X X  X A  
X X X L  3 5 7 7 5 3 L X X I  x x  
X X X l  3 5 7 7  5 > L X X X  x x x  
X X X X l  3 J 7 5 3 1 x x x  x x x x  

X X X X l  3 5 5 3 L X X X  x x x  
X X X X l  3 5 5 3 1 X X X  x x x x  

X X X l  3 5 5  3 i x x x x  x x x  
X X X X L  3 5 3 i x x x  K X X X  

x x x 1  3 3 L X X X  * x x  
x x x i  3 3 L X X X  x x x x  
xxx1 3 3 1 X I X X  X A X  

x x x x 1  3 3 L X X X  * A X  
X X X l  3 3 l X X X  * x x x  
X X * I  3 3 I X X X  X X L  

X X X l  3 3 l X X X  X X X  
X * X I  3 3  I X X X  x x x  

X X X X X  
X X X X  

x x x x  
X X X  
x x  
x x  
X 
X 

x x x  
x x x  

x x x x  
x x x x  

x x x x  
x x x x  

x x x x  
x x x x  

X X X X X  
x x x x x  
x x x x x  

x x x x  
x x x x x  

x x x x  
x x x x  

x x x x  
x x x x  
x x x x x  

x x x x x  
x x x x  

x x x  X X  xxxx  X X X l  1 x x x x  X A X  

xxxx x x x x  xxx x x x x i  3 i x x x  x x x  
xxx xx x xx X X X A L  L X X X  X X X  

X X X L  3 3  l X X X  X X X A  x x x  x x x x  x x x  
X X X l  > 3  I X X X X  x x x  x x  x x x x x  x x x  
X X X L  3 3  l X X X  x x x  x x  X X X X I  x x x  

X X A  x x x x  x x x x  X X X X l  3 3 l X X X  x x x  
X X X X L  3 3 l X X X  X X A  x x x  x x x x  X X X  
X X X l  3 5 3 L X X X  x x x x  X X I X X  xxxx  xxx  

x x x x x x x x x  x x x x x  xxx  
x x x x x x x x x x x x x  x x x x  

X X X L  3 5 5  3 l X X X  x x x  
x x x . 1  3 5 3 l X X X  X X A  
X X X l  3 3 L X X X X  x x x x  

X X X l  3 3 I X X X  x x x  

x x x x x x x  * x x  
x x x  x x x  X X X l  3 > l X X X  x x x  

x x x x  
X X I  X X X I l  33 l A X X  X h A  
X X X  X X X l  3 3 L X X X  X X A  
x x x  X X X l  3 3 1 x x x  x x x  

X X X X  X X X l  3 3 I X A X  X X X  
xxxx X X X l  3 3 1 x x x  x x x  X I  
x x x  x x x i  3 3 L X X X  x x x  a x I x x  

xxx X X X l  3 3 1 x x x  x x x  x x x x x x  
X X x x x  X X X l  J 3 I X X X X  x x x  x x x *  x x x  

x x x  x x x x  1 x 1  X X X l  3 3 1 x x x x  x x x  x x x  X A X  
X x x x x  x x x x x x  x x x x  X X * L  3 3  l X X X  x x x  x x x x  x x x  
1 x x x x x x  X X X h X X A X X X X  X X X l  3 3  l l X X X  X X X  X X A  X X A  
X X X X l  3 l X X X X  x x x x  x x x  X I  
x x  x x x  x x x  x x x  

X X L  L X X X X X  x x x x  X X X A  x x  x x x  x x x  x x x x  x x x  
x x x  x x  X X X  x x x x x x x  x x 1  L X X X X  A X A X  x x x x  x x x x  

x x x  x x x  x x x x x x  x x x 1 x x x x  x x x x  x x x x  X X X X  x x x  

x x x x x x  x x x  x x x x x x  
X X X l  I X X A X  X X X X  X X X  X X  

x x x  x x  x x x  x x x x x x x x x x x x  x x x * x x x  X A A X  X X X  X X A X  

x x x  x x x  x x x x x x x x  
x x x  x x x x x x x x x x x x x  

x x x x x  x x x x x x x x  
x x x x x  x x  

I X X X X X X X  x x x  x x x a  x x x x  x x x  
x x x  I X X  
x x x  x x x x  

x x x x x  x x x  x x x x  
x x x x  

x x x  X X I X  xxx.4 
x x x x x x  X X X X X  X X  X X X X X A  

x x x x x x x x  x x x . 4  x x x x x x x x  
x x x x x x x x x  x x x x  A X X X X X X  

x x x x x  x x x  x x x x  x x x x  
X X X X X  x x x  A A I X  

A X X X X  X A X  X I X A  

x i a x x x  X X A  X I X  
X X A X X  x x  X A A  

X X X X A A  x x x  X X l  
A X X X X  * * A  X h X A  

A 1 1 1  X X I  
X X X h  X A A  X A  

X X A  x x x  
x x x x  

X A X X  
X X X  
X I X  X X A A A  
x x x x  x * x *  x x .  

X X X X l  3 l X X X  x x x x  
X X X l  3 1 x x x  x x x  
X X X l  1 x x x  x x x x  

X X X X l  l X X X X  x x x x  
X X X X l  1 x x x x  x x x  
x x x x L l x x x x  I X X X  
X X X l L  I x x x  x x x  
x x x x x x x x  x x x  

x x x x x x  x x x x x  
x x x x  x x x x x  

x x x x x x  
x x x x x x x x  
x x x x x x x x  
x x x x x x x x x x  
x x x x I x x x x x I  

x x x x l l x x x x x A x  
X X X l  L X X X X X A X  
X X X l  L X X X X A X  

X X X L  3 1 x x x  A X  
X X X X l  3 I X X X  A X  
X X X L  3 l X X X  x x x  
X X X L  3 l X X X  X A X X  
X X X l  L X X X X  X A X X  

X X X l  3 l X X X  x x x  
X X X l  3 3  l X X X  x x x  
X X X L  3 3  l X X X  & X I  
X X X l  3 3  L X X X  & x i  
X A X 1  3 3  L A X X  X.4< 
X A X l  3 l X X X  A X  
X X X l  3 I X A X  X I &  

x x x x 1  I X X X  x x x  
X X X X l  I X X X  I X X  
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4.2 .  The distance "skeleton" 

B l u m  has suggested i n  [12]  tha t  the locus of points a t  

which the propagation wave f ront  ' ' in tersects  i t s e l f "  may be 

perceptually important. This locus defines a s o r t  of "skeleton" 

(Blum: "medial axis")  fo r  the or ig ina l  picture.  I n  t h i s  sub- 

sect ion,  a ' 'skeleton" subset w i l l  be defined for  the distance 

transform introduced above*, and it w i l l  be shown tha t  t h i s  

skeleton i s  the smallest subset of the transform picture  from 

which the e n t i r e  transform picture  can be reconstructed by 

"reversing" the distance-measuring process. 

Define the local  operations g1 and g2 by 

L e t  G (P) be the p ic ture  which r e s u l t s  when g 

P i n  forward r a s t e r  sequence; G 2 ( P ) ,  the r e s u l t  of applying 

to P i n  backward r a s t e r  sequence; and G ( P ) = G  ( G  ( P ) )  . 

i s  applied to  
1 1 

g2 2 1  

Lemma 1. If A i s  any picture and G(A)=(c . ) ,  then a l l  of 

, i , l  i+l, j '  
which a re  defined a r e  Sl. 

I i , l  I and I c .  .-ci,j-l 
1 1 3  IT .-c 1, P I c i , j - c  i , j + l  I 1  I ci,  j-ci-l, j 

Proof: Let A=(ai j ) ,  G1(A)=(b. . ) .  By defini t ion of g1 we have 
11 .-3 and bi, j2bi-l, -1 for a l l  i ,  j 

i , I -  
-1 and bi+l, j -  

SO t ha t  bi , j+l + i ,  j 2bi I j 
for a l l  i ,  j 

*It should be emphasized tha t  since the distance considered 
here i s  non-Euclidean, as already pointed out ,  the result ing 
"skeleton" i s  not l i ke ly  to have any special significance fo r  
visual  form perception; however, it is  s t i l l  a useful picture  
processing tool.  
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Similarly,  by def in i t ion  of g we have for  any B=(bij) and for 

a l l  i , j  
2 

c .Pc -1 i t 3  i, j + l  
C zc .-1 i , j - 1  i , j  

where G2(B)=(c. . ) .  

I f  we can show tha t  the above relat ions on the b ' s  remain true 

when the b ' s  a r e  replaced by c ' s  ( t h a t  i s ,  when g 

the asser t ion made i n  the Lemma w i l l  f o l l o w  immediately, since 

(e .s . )  C i , j - l  3.2 i , j  -1 and c i ,  j g C i ,  j-1 -1 are  equivalent t o  

ICi, j-c i ,  j-1 

Suppose tha t  these relat ions hold for  a l l  the C I S  through 

the (i, j )  th i n  the sense of the backward r a s t e r  sequence. 

Since g can never decrease the value of a picture  element, 

we have b Sb .+lSc .+1. By the induction hypothesis, 

C -1sc and by the re la t ions  on the C I S ,  th i s  

S C  .+1. Hence 

1 3  

i s  appl ied) ,  2 

1 % .  

2 

i , j - 1  i , ~  i / l  

i+l, j-1 i+l, j '  

i , J  
-1)sc .+l, 

i , J  C i ,  j -1 =max (b i , j - 1 ,  c i , j  c i + l , j - l  

proving the induction step. Finally,  

C =max (b c -1)anax(b +1, c +l)=c +1 m,n m,n m,n m,n-1 m , n - 1 ,  m,n 
and s imilar ly  c ZC +1, completing the proof. m-1,n m,n 

-1 and i, j-1 Lemma 2 .  Let A be a picture such tha t  a .Sa 

a .Sa -1 for  a l l  i , j :  then G1(A)=A. Similarly, i f  A i t 1  i-1, j 
i s  such tha t  a , La -1 and a za -1 for a l l  i ,  j ,  i , J  i, j + l  i , j -  i + l / j  
then G2(A)=A. 

i t 1  
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I f  G ( A ) = A  for  a l l  elements up 1 

Proof: Clearly g (a 

t o  the i ,  j t h  ( i n  the sense of the forward r a s t e r  sequence), 
1 ll)=all* 

then gl(ai ,  j)=max(a. 1 - 1  , 91 (ai-l, j ) -1) =max 

-1) by induction hypothesis, and 
1, j '  9 d a i ,  j-1 

( a i ,  j ,  a i ,  j-1 a i - l ,  j 
this=a by the or ig ina l  assumption about A .  The proof of 

the second p a r t  i s  exactly analogous. 
i , j  

G ( G ( A ) ) = G ( A )  f o r  a l l  A 

Proof: By the proof of Lemma 1, G ( A )  has the properties of the 

f i rs t  pa r t  of Lemma 2,  so tha t  G, (G, ( A ) ) = G ,  (A), and similarly 
1 

for  G 2 ( A ) .  By Lemma 1, G ( A )  has 

of Lemma 2; hence by Lemma 2 G ( G  

L A  A 

the properties of both 

Lemma 3 .  The distance transform 

property of Lemma 1. 

pa r t s  

A ) ) = G  2 1  ( G  ( G ( A ) ) = G 2 ( G ( A  ) = G ( A ) .  

of any picture  has the 

Proof: 

element value i s  equal t o  the distance from the element t o  

a zero-valued element, and c lear ly  these distances for  an 

element and any of i t s  neighbors can d i f f e r  by a t  most 1. 

By the Theorem of Section 4.1,  i n  such a picture  each 

Corollary. I f  T i s  any distance transform picture ,  G ( T ) = T .  

Proof: A s  f o r  the Corollary t o  Lemma 2. 

Proof: Evidently we must have c .Sd fo r  a l l  i , j ,  so tha t  

B u t  G never decreases the value of a picture  

i , i  i , j  

h ,k  'dQk=%,k. 

ah ,ksch ,k. element; hence 
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If P+ij) i s  any picture ,  P'=(p! . )  w i l l  be cal led a p a r t i a l  
13 

p ic tu re  of P i f  t !  .=t o r  0 for  a l l  i , j .  
1 , i  i , j  

Corollary. Let T be any distance transform picture ,  T' any 

p a r t i a l  p ic ture  of T.  Then a l l  the elements of T' which are  

equal t o  the corresponding elements of T a r e  invariant under G. 

Proof: Take A=T' , B=T i n  Lemma 4 .  By Lema 3 ,  b .  .=d for 
LI iJ  

h ,  k=ch, k ,  we have a %,k such that ah, k=bh, k' a l l  i , j ;  hence for  a l l  

a s  required. 

?I, k<v; Lemma 5. 

C C 

Let A=(a. . )  be a picture ,  G(A)=(cij) ,  and l e t  
13 

a l l  SV. Then c Lv. 
h ,k  

C h+ l  , k ' h , k+l  h-1,k' h,k-1, c 

Proof: L e t  G1(A)=(b. . ) .  Since G2 never decreases the value 

of an element, we have b 

t h a t  bh , k=max ( a 

bh+l, k- bh, k+l  

1 3  
" bh,k-lSch,k-l- 'V, so 

h-1 I ksch-l, k' 
-1)<V, and ~ @ , ~ = m a x ( b  

h , k ,  'h-1,k-l' bh,k-l h ,k ,  
-1) <v. 

I f  T = ( t .  , )  i s  a distance transform picture ,  the p a r t i a l  
17 

i f  none of t i-1, j '  p ic ture  T*=(t* . )  defined by t* =t. 13 i , j  i , j '  
i s  t .+1 ; 0, otherwise 

ti+l, j ,  ti, j-11 ti, j + l  i t 1  

w i l l  be cal led the skeleton of T.  We assume tha t  T i s  not 

the t r i v i a l  p ic ture  every element of which has value m+n.  

Theorem. G(T*)=T,  and i f  T' i s  any p a r t i a l  picture  of T 

such t h a t  G ( T ' ) = T ,  then T* i s  a p a r t i a l  picture  of T ' .  

I n  other words, T* i s  the p a r t i a l  picture  of T with fewest 

nonzero elements such that G(T*)=T. 



d e f i n i t i o n ,  

G ( T* 1 N=TN. 

T* c o n t a i n s  
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Proof: 

l e t  T be the set o f  e l e m e n t s  of T w h i c h  have va lue  k.  k 
L e t  N be the highest v a l u e  of any element of T ;  then by 

I f  T i s  any p i c t u r e  w i t h  in t ege r -va lued  elements ,  

T*=T so tha t  by t h e  C o r o l l a r y  t o  Lemma 4 ,  bl " 

every  e l e m e n t  of va lue  M w h i c h  h a s  no e l e m e n t  

of va lue  M + 1  a s  a neighbor  i n  

and by t h e  Corol lary t o  Lemma 

e l emen t s .  O n  the other hand, 

i n  G(T*)  w i t h  va lue  M + 1 ,  then 

element i n  G ( G ( r C ) )  h a s  va lue  

T (or  e q u i v a l e n t l y ,  i n  G(T*)) ,  

4 ,  G(T*)  s t i l l  c o n t a i n s  t h e s e  

i f  h , k = M  and has a neighbor 

by d e f i n i t i o n  of G ,  the ( h , k )  

a t  l ea s t  M. But G ( G ( T * ) ) = G ( T * )  

(Corol lary to  Lemma 21,  and by the proof  of Lemma 4 ,  t he  (h ,k)  

element i n  G(T*)  can  have va lue  a t  m o s t  tha t  of the ( h , k )  ele- 

ment i n  G ( T ) = T  (Coro l l a ry  t o  Lemma 3 ) ;  hence every such element 

has va lue  M i n  G ( T * ) ,  proving that  G(T*lM=TM. 

argument proves G ( T * )  =T gor a l l  k ( = N , N - 1 ,  ..., l,O), so tha t  

This induc t ion  

k k  
G(T*)=T. Conversely, l e t  T' be any p a r t i a l  

be an e l e m e n t  of t ha t  G ( T ' ) = T ,  and l e t  

w h i c h  has no neighbor  i n  T of va lue  M + 1  and 

be i n  T ' .  Then the va lues  o f  i t s  neighbors 

5 , k  

p i c t u r e  o f  T such 

T o f  va lue  M>O 

which fails to  

i n  G ( T ' ) = T  are  

5 M  (Lemma l), w h i l e  i t s  value i n  T '  i s  0 <M, so t h a t  by 

Lemma 5 i t s  va lue  i n  G ( T ' )  i s  s t i l l  <M, c o n t r a d i c t i n g  

G ( T ; ) = T .  n u s  T "  must  con ta in  every  element o f  T* of 

v a l u e  >0, completing the proof .  
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Ske le tons  for  the p i c t u r e s  of F igure  4 are shown a s  

F i g u r e  5. I n  t h i s  F igu re ,  the  nonzero s k e l e t o n  p o i n t  v a l u e s  

are  p r i n t e d  o u t  modulo 10.  A s  Figure  5 b-c s h o w ,  the s k e l e t o n  

i s  n o t  i n v a r i a n t  under r o t a t i o n ;  n o t e  a lso tha t  the Eucl idean 

" ske le ton"  fo r  a c i rc le  would e v i d e n t l y  be j u s t  the p o i n t  a t  

i t s  c e n t e r ,  u n l i k e  the ske le ton  shown i n  F igu re  5a. 



~ X X X X X X X X X X X K X X X X X  X 
’\ I 1x x x  

2 x  x x  
j x  X X 

( I  

< 4 4 x  X X 

f 4 4 x  X X 
$ 3  3 x  X 7 X 
f Z  2 x  X 7 X 
< l  1 x  X 7 X 
~ X X X X X X X X X X X X X X X X X  X 7 X 

5 5 5 5 5 5 5 5  X X X 

X 7 X 
X 7 x 

X X 
X X 

x x x x  x x x x  X X 
x x x x x x x x x x x  X x 

x x x  xxx  x x  
x x x  x x x  x x  

x x  X X  X 
x x  x x  

?.x x x  
I >  x x  

A Y  5 5 x x  
C Y  7 7 x x  
< X  9 x x  
i l (  C X 

x 8% 1 1 x x  
X’ i  2 2  x x  
X A  3 3  A X  
Xk 4 x x  
K Y  3 3  x x  

< K  2 x x  
x x  1 x x  
x x  3 9 X X  

x x  x x  
X X  7 7 x x  

A X  5 X)! 
X A  4 x x  

X X  X X  
X X  xx  

X X  x x  
X X A  x x x  

x x x  x x x x x  
x x x x x x x x x x x  

x x x x x x  

F i g u r e  5. Sheet 1 
Skeletons for  F igu re  4 



X X X X X X A X  xx A X 1  

x x x x x x x x x x x  xx A X X X  x x x x x x  
x x x  * a x  1 x 1  x x x x x x x x x x x x  

xxx x x x  X I A A  x x * x x x x x x x x x x x x x  
X A X X  Axx x x x x  xx X X X A  xxxx 

xxxx axx x x x  x x x  x x x  K X X  4 X X I X  

xxxx 
X X A  xx A X X  A A X X X X X X X X X X X X  xxxx 

x x x x  
xxx 

x x x x  x x x x x  X X X l  i x x x  x x x  X A X  x x x  
x x x  x x x  xx x x x  x x x x x x x  X X X X  3 X X A X  xxxx 

xxx 5 5 X X A  
xxx A X X  X X X  x x x x  x x x  x x x  x x x x  66 X X 1  
xxxx xxx A X  x x x x  x x x  x x x  

xxx x*x x x x  x x x  x x x x  7 X X X A  x x x  I X  
x x x  x 

* * A  x x  
x x x  x x  

xxx X X I  

X h X  x x x x  a x *  x x x x x  xxxx x x x  x x x  a s  
n X X A  xxx xx x x x x x  xxx 11 x x x  

X X X A  xxx x x x  x x x x x  xx x x x  x x x  
xxxx A X X X  xxx x x x x x  A X X  xx x x x  
xxx xxxx xxx x x x x x x  xx I X X  x x x x  1 xxx X X X A  
X A  xxxx A X  X X X X X  

8 
7 

xxx x x x  x x x x  b X X X  X X X  
x x x  x x x x x  xx x x x  X X X X  6 X X X  X A X X  X 

x 
xxxx 

x x x  x x x x  xxx x x x  x x x  5 x x x x  x x x  x x x x  
x x x  x x x x  A X X X X X  XXXX j X X X  A X X X  xxxx 

x x x  xx x x x  xxxx x x x  4 x x x  xxx 
x x x x  x x x  xxxx X x x x  44 x x x  x x x x  

xxxx x x x x  x x x x  x x x  4 x x x x  X L X  
x x x x x x x x x a x  x x x x  4 x x x  x x x  

xxxx x x x x  x x x x x a  x x x  z xxx X X A X  
I l X X  

x x x  x x x x  X X X  4 x x x  X X A  L X X X  
X X X  X X X X  x x x  4 x x x  x x x  x x x x  

xxxx xxx xxx xxx 3 x x x  x x x  
xxxx xx x x x x x x  xxxx 3 x x x  x x x x  

X x x x x x  x x x  x x x x x x x x x x  x x x  3 xxx x x x  
x x x x x  x x x  x x x x x x x x x x x x x  x x x  2 X A X  X X X A  

X X  

x x x x x  x x x  x x x x x  xxxxx x x x x  2 x x x x  x x x x  
x x x x x  x x x  x x x x  x x x x x  x x x x  2 x x x x  x x x  

x x x x  X X X X L  x x x x  x x x x x  x x x x  x x x x  x x x x  
x x x x x  x x x  x x x x  x x x  X X X l  L 1 x x x  x x x  

x x x x x  x x x  X X X L  3 x x x  x x x x x x x x  x x x  
x x x x x  x x x  x x x  x x x  x x x x x x  x x x x x  

xxaxx x x x x  X X X  6 6 XX xxxx x x x x x  
x x x x x x  x x x x x  x x x x  8 x x x  xxxxxx 
axxxx xxxx x x x  999 xxx x x x x x x x x  

xaxxx xxx xxx 9 8  xxx x x x x x x x x  
X L X X  x x x  x x x x  8 7  x x x  x x x x x x x x x x  

x x x x  xxxx x x x  8 5 x x x  x x x x I x x x a x x  
x x a  x x x x  x x x  3 3 x x x  x x x x  l X X X X X X X  
X X  x x x x  x x x x  x x x x  xxx 2 x x x x x x x  
xx xxxx x x x x  x x x x  x x x  2 x x x x x x  
I x x x x  x x x x x  x x x x x  x x x  3 X X X  xx 
X x x x x  x x x x x  x x x x x x  x x x x  3 x x x  xx 

x x x x x  x x x x x  xxxxxxxxx X X X  3 X X K  X X X  
x x x x x  x x x x x  x x x x x x x x x  X X X  3 X X A  X X X X  
x x x x x  x x x x x x x x x x x x  x x x  x x x x  X A X X  

x x x x  x x x x x x x  x x x  3 xxx X A X  
x x x x x  x x x x  X A X  3 3  xxx X X I  

x x x x  x x x  XAX 3 3  X X X  X X X  
x x x x  x x x x x  XXX 33  xxx x x x  

x x x x  x x x x x x x  X A X  3 3  X X X  X X A  
x x x x  x x x  x x x x  X I X  3 X X X  A X  
x x x x x  x x x  x x x  X A X  3 X X X  X A X  

x x x x x  x x x  X I X X  xxxx 2 *xx X A X  
x x x x  xx x x x x  X X A X  2 7  X X X  X X X  

x x x  xx x x x x  x x x  2 2  x x x x  xax 
x x x  xx x x x  I X X X  2 x x x  xxx 
x x x x  xxxx x x x  xxxx 3 x x x  X A X  

x x x  3 3  xxx x x x x  X X X  xxxx x x x  
x x  xxxxx x x x  X X X  33 X X X X  X X A  
x x  xxxxx x x x  x x x  3 x x x  x x x  
X X h  xxxx x x x x  X X X h  4 X X X  X X 1  
x x x  xxxx x x x  x x x x  4 xxx x x x  
xxaxx x x x x  x x x  x x x  5 xxx X X X A  
x x a x x x x x x  x x x x x  x x x  x x x  5 5  xxx x x x  

x x x x x x x x x x x x x  x x x x  x x x  5 x x x  x x x  
x x x x x x x  x x x  x x x  4 x x x x  xxxx 

x x x  x x x  x x x  4 x x x  xxx 
x x x x  x x x  4 x x x  x x x  

x x x  x x x  X X X  x x x x  
x x x  x x x  4 x x x  x x x  
X X X  XXX 44  X X X  X X X  

x x x x  xxx 4 xxx xxx 
X A X X  X X X  44  X X X  X X X  X A  
x x x  x x x  44 x x x  xxx x x x x x  

x x x  X A X  44 xxx xxx x x x x x x  
X X x x x  x x x  4 X X X A  xxx xxxx xxx 

x x x  xxxx x x x  x x x  4 xxx*  xxx X A X  xxx 
X X X X X  X X X X X X  X X X X  X X A  3 Z X X X  X X X  X X X X  xxx 
X x x x x x x  x x x x x x x x x x x  x x x  3 3  x x x  xxx x x x  xxx 
X x x x x x x  X X X  X X A X X X  X X X  3 X X X X  X X X X  X X A  X X  

x x x  x x x  xxx x x x  2 x x x x  x x x x  x x x  x x  X A  
x x x  xx 2 2  X A X X X  x x x x  x x x x  xx x x x  xxx x x x x  

x x x x  x x x 1  X X X A  xx L x x x x  xxx xx 1 x 1  x x x x x x x  
x x x  x x x x  X I X X  xxxx X X X A  xxx x x x  x x x  x x x x x x  

x x x  xx x x x  x x x x x x x x x x x x  X X X A X X X  X X A X  x x x  xxxx 
x x x  x x x  x x x x x x x x  x x x x x x x x  X A X  x x x 1  

x x x  x x x x x x ~ x x x x x x  x x x x x  X A X  xxxx x x x  1 x x  
x x x x x  x x x x x x x x  xxxx x x x  X A X X  
x x x x x  xx xxxx x x x  X A A X  

xxxx xxx 

x x x x x x  x x x x x  x x  X X X A X X  
x x x x x x x x  X X X A  X A X X X X X X  
x x x x x x x x x  x x x x  x x x x x x x  

X * X X A  x x x  X A X X  A X X X  
xxxax x x x  Aaxx 

X X X X A  xxx xxxx 
X X h A X X  x x x  X & A  

X X I A A  xx X * A  
1 X X X 1 1  I X X  X X A  

x x x x x  A X X  X X X A  
xx1x x x x 1  x x x  
X X A  X X A A  X X I  
xxx 1 1 x x 1  X A A  
X X X X  A X A A  X X A  

X 
xx 

X X A  
A X X X  

~ l g u r e  5 .  shee t  2 - S k c l r t o n s  for  F i q u r e  4 
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5. Applicat ions:  Connectivity and proximity 

The connec t iv i ty  t ransformation descr ibed  i n  Sect ion 3 

h a s  s e v e r a l  immediate app l i ca t ions .  Once a label h a s  been 

assigned to  each connected component of a p i c t u r e ,  i t  i s  

t r i v i a l  t o  count the number o f  such components by simply 

counting the number of l a b e l s  which w e r e  used. (A spec ia l -  

purpose ve r s ion  of  t he  connected component program can be 

w r i t t e n  w h i c h  only counts  the  components b u t  does no t  l a b e l  

each element o f  each component: see N u t t a l l  [14] and Sabbagh 

[ 1 5 1  pp 43-48. I t  i s  a l s o  p o s s i b l e  t o  perform this  "blob 

counting' '  ope ra t ion  by a process of  success ive ly  d e l e t i n g  

from each component border elements w h i c h  do n o t  disconnect  

the component u n t i l  on ly  one element per component remains:* 

for  this  approach, which i s  e a s i l y  implemented using p a r a l l e l  

local o p e r a t i o n s ,  see Kirsch [ 2 ]  , Minot [16] and Izzo [17-181. 

A c l o s e l y  related approach,using a c c r e t i o n  r a t h e r  than d e l e t i o n ,  

has been implemented by von Foe r s t e r  and h i s  co l leagues  [19-21]$ 

One can a l s o  measure t h e  area of any given component by counting 

the number of t i m e s  i t s  l a b e l  occurs.  

*Provided t h a t  the components a r e  simply connected: i f  they 
have "holes"  i n  them, a more complicated procedure i s  necessary.  
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5.1. Adjacency and order of connectivity 

Two somewhat l e s s  t r i v i a l  problems which can be solved 

with the aid of the basic connectivity transformation a re  

Constructing the graph corresponding t o  a given (a) 

dissection of a picture in to  connected components. 

(b) Determining the order of connectivity of a given 

connected component. 

I n  the graph of any dissection of the picture ,  each 

connected component is represented by a single node o r  

vertex: f o r  simplicity,  these may be taken to  be the ver t ices  

of a regular polygon. Two nodes a re  joined by an a rc  (a side 

o r  diagonal of the polygon) i f  and only i f  the corresponding 

components a r e  adjacent. For many purposes i t  i s  convenient 

t o  represent the exter ior  of  the picture  by a s ingle  additional 

node, which i s  considered to  be adjacent to  every component 

having elements on the boundary of the picture.  A graph w i t h  

k nodes i s  completely specified by i t s  incidence matrix: this 

i s  a k-1 by k-1 triangular matrix =1 i j  
if the ith and jth nodes are joined by an arc:  =O otherwise. 

( a i j ) ,  i < j ,  i n  which a 

I n  Figure 3 ,  the connected components labeled A , .  . . ,M, 
together with the connected components of  the s e t  of blank 

poin ts ,  cons t i tu te  a dissection of the picture.  Since the 

border of Figure 2 was black, the additional "exterior" com- 

ponent i s  connected to  a l l  of these blank points except those 

i n  the b e l t s  immediately surrounding regions F,  G ,  and J. 

The s e t  of blank points t h u s  has four components, namely the 

one of  which the picture  border i s  a pa r t  and the ones sur- 

rounding F, G ,  J. 

of the graph of  Figure 3 a r e  shown below: 

The nonzero en t r ies  i n  the incidence matrix 
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Picture 
border 

Border 
of F 

Border 
of G 

Border 
of J 

Border Border Border 
of F of G of J A B C D E F G H I J K L M  

0 0 0 1 1 1 1 1 0 0 1 1 0 1 1 1  

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0  

0 0 0 0 1 0 0 1 0 0 0 0 0 0  

0 0 0 1 0 0 0 0 0 1 0 0 0  

A computer program for constructing the graph of a given 

dissect ion i s  eas i ly  writ ten,  once the connected components 

of the dissection have been labeled. I t  suff ices ,  for  example, 

t o  examine every two by t w o  subpicture and t o  enter 1's i n  the 

appropriate p o s i t i o n s  i n  an incidence matrix whenever such a 

subpicture contains points which have two o r  more d i f fe ren t  

labels .  The graph of Figure 3 ,  constructed i n  t h i s  way by 

a FORTRAN program and output by a tape-controlled p l o t t e r ,  

i s  shown a s  the f i rs t  par t  of Figure 6. 

Once the graph has been constructed, it i s  easy to  solve.  

the second problem posed e a r l i e r ,  

order of connectivity of a connected component i s  equal t o  the 

number of nonadjacent "pieces" in to  which the picture  i s  divided 

i f  the given component i s  deleted. 

number of connected components i n to  which the graph i s  divided 

i f  the corresponding node and the arcs  emanating from it  are  

deleted. This number can be determined by examining the 

I t  i s  eas i ly  seen tha t  the 

Evidently, t h i s  i s  j u s t  the 
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Figure 6. Graph and Multiple Connectivity Table for Figure 3. 
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inc idence  mat r ix  of  the graph a f t e r  d e l e t i n g  the corresponding 

row and column*. A FORTRAN program which performs t h i s  a n a l y s i s  

h a s  been w r i t t e n ;  i t s  output  f o r  Figure 3 i s  shown i n  the second 

p a r t  of Figure 6. 

*This number could be determined d i r e c t l y  from the p i c t u r e  a s  
follows: Temporarily label t h e  p o i n t s  of  the given component 1, 
the p o i n t s  o f  i t s  complement 0 ,  whether these p o i n t s  w e r e  1 o r  0 
i n  the o r i g i n a l  p i c t u r e .  Apply the connected component l a b e l l i n g  
program to  t h i s  new set of 0's and simply count the number of i t s  
components. However, it i s  much simpler and f a s t e r  t o  determine 
the o r d e r s  of connec t iv i ty  from the graph, once th i s  h a s  been 
cons t ruc t ed  . 
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5.2. Proximity 

Closely related to  the t w o  problems j u s t  discussed i s  the 

question of defining a "graph" for  a picture  such as  Figure 3 

ignoring the unlabeled "borders", and considering two of the 

label led regions a s  being "adjacent" i f  they a re  separated only 

by a border. In tu i t i ve ly ,  region I on Figure 3 i s  adjacent i n  

t h i s  sense to regions B ,  C and D ,  but region B i s  not adjacent 

to  region D. The graph for the labelled regions and "exterior 

region'' of Figure 3 corresponding to  th i s  notion of adjacency 

i s  shown a s  Figure 7.  

The concept of adjacency i n  the i n t u i t i v e  def ini t ion j u s t  

given requires careful  consideration. I f  the borders between 

regions i n  a p ic ture  a l l  have approximately the same thickness, 

the adjacency of t w o  regions i n  t h i s  sense essent ia l ly  r e f l ec t s  

t h e i r  degree of proximity; regions a re  adjacent provided they 

approach one another w i t h i n  a distance j u s t  greater  than the 

border thickness." As i n  the case of true adjacency, t h i s  can 

be determined by examining a l l  possible subpictures of the 

appropriate s i ze  and entering 1's i n  the incidence matrix 

whenever points with two o r  more labe ls  a r e  contained w i t h i n  

such a subpicture. The graph i n  Figure 7 was drawn by a 

FORTRAN program which analyzed 4 by 4 subpictures of Figure 

3 i n  t h i s  manner. 

A more d i f f i c u l t  problem i s  presented i f  the borders 

between regions a re  of varying thickness. 

however, one might proceed by determining the degree and direction 

of the elonqation of any segment of border (see Section 6 . 2 . ) .  

Even i n  this  case, 

*One should cer ta in ly  not define two regions a s  being "adjacent" 
i f  i t  i s  merely possible to  go from one t o  the other by moving 
through border elements only; by t h i s  c r i t e r ion ,  regions A and B ,  
B and D on Figure 3 would be "adjacent", and K would be "adjacent" 
t o  the p ic ture  ex ter ior .  
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"Adjacent" could then be  defined a s  "separated by a segment 

of  border  which i s  t a n g e n t i a l l y  e longated".  This d e f i n i t i o n  

would be c o n s i s t e n t  with the i n t u i t i v e  concept of adjacency f o r  

t h e  l a b e l l e d  reg ions  of  Figure 3 .  

I t  should be pointed out  that  the i n t u i t i v e  d e f i n i t i o n s  

of adjacency suggested i n  the l a s t  three paragraphs a r e  of more 

l i m i t e d  usefu lness  than t h e  mathematical d e f i n i t i o n .  For example, 

one cannot i n  genera l  determine t h e  o rde ro f  connec t iv i ty  of  a 

region from a graph based on such a d e f i n i t i o n .  Examination 

of  the graph i n  Figure 7 does indeed show, i n  agreement w i t h  

i n t u i t i o n ,  t h a t  a l l  t h e  regions except  D a r e  simply connected, 

w h i l e  D h a s  o rde r  of connec t iv i ty  4.  However, suppose t h a t  i n  

Figure 3 the s i x  D ' s  t o  the r i g h t  of the top row of F ' s  a r e  

replaced by b l anks ,  making a "cut8 '  i n  region D .  This does no t  

change t h e  graph of  t he  Figure ( reg ion  D i s  s t i l l  connected, 

and region F s t i l l  n o t  ad jacen t ,  i n  the i n t u i t i v e  sense ,  t o  

the p i c t u r e  e x t e r i o r ) ;  b u t  reg ion  D now has  order  of  connec t iv i ty  

only  3*. 

*Note t h a t  making this ''cut'' does change the graph i n  Figure 
6 ,  s i n c e  i t  combines the "border of F" region w i t h  the ' ' p i c tu re  
border"  region.  The modified graph does i n  f a c t  ref lect  the 
o r d e r s  o f  connec t iv i ty  which r e s u l t  from making the c u t .  



I 

- 41 - 

6.  Applicat ions:  Shape (Elonqation) 

The d i s t a n c e  transform can be used -0 o b t a i n  a v a r i e t y  

of information about  t h e  shapes of reg ions  on a p i c t u r e .  

I n  th i s  s e c t i o n ,  two app l i ca t ions  of t h i s  transform t o  the  

d e f i n i t i o n  of e lonqat ion  a r e  discussed.  The "elongation1'  

considered h e r e  i s  an i n t r i n s i c  shape property:  a snake i s  

considered t o  be elongated even when it i s  co i l ed .  I t  i s  

d i f f i c u l t  t o  d e f i n e  this  property i n  conventional geometrical  

terms, i n  s p i t e  o f  i t s  evident  i n t u i t i v e  s ign i f i cance .  

Since t h e  connected component t ransformation provides  

t h e  a b i l i t y  to  s i n g l e  o u t  any component of a p i c t u r e  f o r  

a n a l y s i s  of i t s  shape, i t  w i l l  be assumed below t h a t  the 

given p i c t u r e  con ta ins  only a s i n g l e  connected region 

(I ' f igure")  c o n s i s t i n g  of l's, and that  the remainder of 

the p i c t u r e  c o n s i s t s  of 0's. 
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6.1. Elonqation a s  the proportion of a fiqure which l i e s  
close t o  i t s  boundary 

I n  h i s  or iginal  papers [ l O - l l ]  on the propagation concept, 

B l u m  suggested tha t  the successive wavefronts--that i s ,  the 

s e t s  of points which a re  a t  a given distance from the or iginal  

f igure boundary--could provide useful information about the 

shape of the figure.  

the wavefronts a re  concentric squares, and the numbers of 

points  i n  them decrease l inear ly  to  zero. (See the sol id  

curve i n  Figure 8 a ) .  O n  the other hand, i f  the figure i s  

a very elongated rectangle (Figure 8b ) ,  the number of points 

i n  a wavefront decreases l inear ly  u n t i l  the center l i ne  of 

the rectangle i s  reached, when it drops abruptly to  zero. 

Analogous p l o t s  of number of points vs. number of s teps  for 

three i r r egu la r  f igures of approximately equal area (regions 

F ,  J and K of Figure 3 )  are  shown i n  Figure 8c-e. 

For example, i f  the figure i s  a square, 

A s  the so l id  curves i n  Figure 8 ,  especially pa r t s  (a-b),  

indicate ,  the manner i n  which wavefront "perimeter" decreases 

provides a measure of the elongation of a given figure. This 

measure represents the degree to  which the i n t e r i o r  of the 

f igure l i e s  close to i t s  boundary, which i s  in tu i t ive ly  related 

to  the i n t r i n s i c  elongation of the figure.  

A shape descriptor closely a l l i e d  to  wavefront perimeter 

i s  the number of d i f fe ren t  squares of a given s ize  which a re  

contained within a given figure and touch i t s  boundary. For 

simplicity,  only squares whose sides a re  pa ra l l e l  t o  the sides 

of the p ic ture  w i l l  be considered. These numbers can be com- 

puted by systematically erecting a l l  possible squares on the 

cross-sections of the figure by the r o w s  of the picture.  
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A n  IBM 7090/94 program f o r  doing this  h a s  been w r i t t e n  i n  

FAP. I n  Figure 8, the numbers of boundary-touching squares  

a r e  p l o t t e d  as  dashed curves f o r  comparison w i t h  the wavefront 

per imeters .*  

The measure of e longat ion provided by these  shape d e s c r i p t o r s  

i s  r e l a t i v e l y  crude,  s i n c e  they are computed over t h e  e n t i r e  

f i g u r e .  A much more s e n s i t i v e  measure of e longat ion w i l l  now 

be def ined ,  us ing  the d i s t ance  ske le ton  concept introduced i n  

Sec t ion  4 . 3 .  

*The wavefront and enclosed squares  d e s c r i p t o r s  a r e  conceptual ly  
re la ted,  b u t  n o t  equiva len t ,  t o  t h e  "Buffon needle" shape d e s c r i p t o r  
proposed by Tenery [22-231,  which involves  the  p r o b a b i l i t y  t h a t  
a l i n e  segment of given length randomly dropped on a f i g u r e  w i t h  
one end i n s i d e  the f i g u r e  a l s o  h a s  the other end i n s i d e .  
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6.2 Elonqated p a r t s  of a f i q u r e  

The skeleton subset introduced i n  Section 4 . 3  can be used 

t o  def ine a var ie ty  of useful shape proper t ies .  

it i s  appl ied,  i n  combination with proximity analysis  (see 

Section 5.2.1, t o  the problem of determining elongated p a r t s  

of a given f igure .  The approach described below i s  based on 

the i n t u i t i v e l y  appealing idea t h a t  any elongated f igure p a r t  

should give r i s e  to  a skeleton subset s imilar  t o  tha t  of an 

elongated rectangle .  

number of adjacent  o r  proximate poin ts  located a r e l a t ive ly  

sho r t  dis tance away from the f igure  border.  I f  the "reverse"  

d is tance  transformation (Section 4 . 3 . )  i s  applied to  t h i s  s e t  

of po in ts ,  the elongated p a r t  of the o r i g i n a l  f igure  should 

be regenerated. 

I n  t h i s  sect ion 

Such a skeleton should contain a la rge  

Consider as an example the f i c t i t i o u s  "hydrography" of 

Figure 9 (a )  , i n  which the XI s a r e  w a t e r  and the blanks land. 

I n t u i t i v e l y ,  the r i v e r ,  t r i b u t a r i e s  and creeks a r e  elongated, 

bu t  the lake and bay a r e  not. 

ing skeleton locus modulo 10,  where the land points  have been 

t r ea t ed  a s  O ' s ,  the water points  as 1's. I n  t h i s  f igure  the 

components of the poin ts  w i t h  values 5 o r  l e s s ,  defined by a 

Figure 9 (b )  shows the correspond- 

proximity c r i t e r i o n  using a 3 by 3 subpicture ,  have been circled".  

The l a rge  components (25 elements o r  more) evident ly  correspond 

t o  elongated port ions of the hydrography, the one a t  the lower 

r i g h t  t o  the elongated loop of  lake around the is land.  I n  Figure 

9 ( c )  these elongated pieces have been regenerated by applying I 

I 

the  reverse  d is tance  transform s t a r t i n g  with these la rge  com- 

ponents only. The regenerated p a r t s  a r e  represented by E ' s ,  

the  remaining o r ig ina l  water points  by dots .  

*The number 5 i s  an a rb i t r a ry  threshold,  not necessar i ly  
optimum. Skeleton points  contained i n  the same 3 x 3 s u b -  
p i c t u r e  were considered t o  belong t o  the same component 
only i f  t h e i r  values d i f fe red  by two o r  l e s s .  
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Figure 9A. Lake, River and Streams 
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Figure 9C. "Elongated P a r t s "  of Figure 9A 
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This example suggests the following general procedure for  

determining elongated par t s  of a figure: 

(1) Apply the distance transform to  the figure and determine 

the skeleton locus. 

For each k=2,3 , . . . , up to  half  the picture  diameter 

i f  necessary, consider the s e t  Sk of skeleton points 

which have values S'k. 

(2) 

( 3 )  Determine "proximity components'' of each S and k' 
count the number of points i n  each component. 

(4)  Select  those components, i f  any, which have more than 

4, points.  A reasonable value for  4, i s  i n  the range 

5k-l0k*, corresponding t o  a s e t  of proximate skeleton 

points whose ''length" i s  a t  l e a s t  2% times the " w i d t h "  

of the piece of f igure which gave r i s e  to  it. 

(5)  Apply the reverse distance transform to these com- 

ponents to  reconstruct the elongated pa r t s  of the 

or ig ina l  f igure.  

*This uncertainty can be reduced i f  the skeleton locus i s  
"thinned" before performing t h i s  step.  
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Appendix 

Proof of the equivalence of parallel 
and sequential local operations 

We must show that any local operation applied in parallel 

is equivalent to a series of local operations applied se- 

quentially, and vice versa. 

operation which when applied in parallel takes ai 

But indeed, let f be any local 

into 
,j - 

a* and let the values of the a . I s  and a* . I s  range between LY i, I 1 ,7  
0 and 2'-1. 

follows: g takes a into 

Now define the local operations g and h as 

ij 

where the bracket denotes the integer part; and h takes a: 
r -r A r J  

Evidently [2-ra' . ]  is just 

, + a,*,; and then a" .=a{, j-2 ai, j- 

into a'' .=a' .-2 [2 ai .]. 

a - r it3 i,3 1 3  it3 

i, 7 i, j i, 3 1,J i, 7 
r . ,  so that a' =2 a 

a * . .  Hence if g is applied to the picture sequentially, 

and then h is applied sequentially,* the result is exactly the 

same as if f is applied inparallel. 

i,l 

Conversely, let f be any local operation which when ap- 

plied sequentially takes a , into a * . .  To construct a 

sequence of local operations which produce the same result as 
i, 3 i, 3 

*h of course involves only the (i,j) point and not any of 
its neighbors, so that applying it to the picture "sequentially" 
and ''in parallel" are no different. This proof and that of 
the converse use the device of "shifting" the element values, 
by multiplying them by 2', so as to keep them ''separate" from 
other values which are to be stored at the same picture element 
locations. 
"shifts" the original value back, while taking ai --2r[2-rai,,] 
eliminates the shifted original value. 
been possible to formulate proofs which used powers of different 
primes to keep the values separate, as in Section 2.1. 

Taking [2'rai,j3 eliminates the new value and 

It would &$so have 



f when they are successively applied in parallel, we proceed 

as follows: 

=a =v,lSiZm,lSjSn, where v is a 
0 ,  jZam+l, j=ai, o i, n+l 

Define a 

value not taken on by any a or a* ,lsigm, lsjsn. Let all 
a ,a* . and v lie in the range 0 to 2r-1. 

i, j 1, j 
i,j 1,1 
Define functions $ ,$ $ $ as follows: 

0 R' L' U' D 

r Then $R($,(ai,j))=2 a +a 

preserves the original element values a: 
so that $ applied after $ R 0 

multiplied by 2r, 
i,j i,j-1' 

I r J  
but shifts the unmultiplied element values one step to the 

right. Similarly, $ ,\\t and $ applied after $ , shift the 
unmultiplied element values one step to the left, upward and 

downward, respectively. 

L U  D' 0 

r -r Let g take a . into [2-ra 3 if a .-2 [2 ai,j]=v, 
i j  it1 -f. it1 -r and into f ([ 2 ai-l, j-l I , * * J 2  ai+l,j+l I), otherwise. Then 

it is easily verified that the following sequence of local 

operations, each applied in parallel, produces the same result 

as applying f sequentially: 

.... 



.... 

.... .... 

.... 

.... 

(mn subsequences ending in g; the general subsequence is 

n-j n-1 j-1 m-i m-1 i-1 
$o'$R '$L '$R '$D '$R '$D 'g). 

In fact, the general subsequence successively converts every 

element a of the matrix to the right, left, above and 

below the (i,j) element to the value 2 a +v, while the 

(i,j) element retains the value 2 a .+a . ;  g then operates 
like f on the (i,j) element, while taking every other element 

back into a Thus applying the subsequences in succession 

((i,j)=(1,1),(1,2),.=0l(~,n),(2,l),0.08(2,n),=.0,(m,~),=.., 

(m,n)) is the same as applying f sequentially. 

r 
s,t 

i,l it3 

s,t 

r 

s,t- 


