424 research outputs found
Multiferroic behavior in the new double-perovskite LuMnCoO
We present a new member of the multiferroic oxides, LuMnCoO, which we
have investigated using X-ray diffraction, neutron diffraction, specific heat,
magnetization, electric polarization, and dielectric constant measurements.
This material possesses an electric polarization strongly coupled to a net
magnetization below 35 K, despite the antiferromagnetic ordering of the Mn and Co spins in an configuration along the c-direction. We discuss the magnetic order
in terms of a condensation of domain boundaries between and
ferromagnetic domains, with each domain boundary
producing a net electric polarization due to spatial inversion symmetry
breaking. In an applied magnetic field the domain boundaries slide, controlling
the size of the net magnetization, electric polarization, and magnetoelectric
coupling
Approach to the metal-insulator transition in La(1-x)CaxMnO3 (0<x<.2): magnetic inhomogeneity and spin wave anomaly
We describe the evolution of the static and dynamic spin correlations of
LaCaMnO, for x=0.1, 0.125 and 0.2, where the system evolves
from the canted magnetic state towards the insulating ferromagnetic state,
approaching the metallic transition (x=0.22).
In the x=0.1 sample, the observation of two spin wave branches typical of two
distinct types of magnetic coupling, and of a modulation in the elastic diffuse
scattering characteristic of ferromagnetic inhomogeneities, confirms the static
and dynamic inhomogeneous features previously observed at x0.1. The
anisotropic q-dependence of the intensity of the low-energy spin wave suggests
a bidimensionnal character for the static inhomogeneities. At x=0.125, which
corresponds to the occurence of a ferromagnetic and insulating state, the two
spin wave branches reduce to a single one, but anisotropic. At this
concentration, an anomaly appears at {\bf q}=(1.25,1.25,0), that could be
related to an underlying periodicity, as arising from (1.5,1.5,0)
superstructures.
At x=0.2, the spin-wave branch is isotropic. In addition to the anomaly
observed at q, extra magnetic excitations are observed at larger q, forming
an optical branch. The two dispersion curves suggest an anti-crossing behavior
at some {\bf q'} value, which could be explained by a folding due to an
underlying perodicity involving four cubic lattice spacings
The jigsaw of PRRSV virulence
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of the, probably, most economically important disease for the pig industry worldwide. This disease, characterised by producing reproductive failure in sows and respiratory problems in growing pigs, appeared in the late 1980s in the United States and Canada. Since its appearance, strains capable of producing higher mortality rates as well as greater severity in clinical signs and lesions than classical strains have been identified. However, since the first reports of these “virulent” PRRSV outbreaks, no homogeneity and consensus in their description have been established. Moreover, to the authors’ knowledge, there is no published information related to the criteria that a PRRSV strain should fulfil to be considered as a “virulent” strain. In this review, we revise the terminology used and gather the information related to the main characteristics and differences in clinical signs, lesions, viral replication and tropism as well as immunological parameters between virulent and classical PRRSV strains and propose a first approximation to the criteria to define a virulent PRRSV strain
Measurement of the local Jahn-Teller distortion in LaMnO_3.006
The atomic pair distribution function (PDF) of stoichiometric LaMnO_3 has
been measured. This has been fit with a structural model to extract the local
Jahn-Teller distortion for an ideal Mn(3+)O_6 octahedron. These results are
compared to Rietveld refinements of the same data which give the average
structure. Since the local structure is being measured in the PDF there is no
assumption of long-range orbital order and the real, local, Jahn-Teller
distortion is measured directly. We find good agreement both with published
crystallographic results and our own Rietveld refinements suggesting that in an
accurately stoichiometric material there is long range orbital order as
expected. The local Jahn-Teller distortion has 2 short, 2 medium and 2 long
bonds.Comment: 5 pages, 3 postscript figures, minor change
Effect of band-filling and structural distortions on the Curie temperature of Fe-Mo double perovkites
By means of high resolution neutron powder diffraction at low temperature we
have characterized the structural details of
() and () series of compounds. This study reveals a similar variation of the mean
bond-angle \FeOMo in both series. In contrast, the mean bond-distance \FeMoO\
increases with La but not with Ca substitution. Both series also present a
different evolution of the Curie temperature (), which raises in the La
series and slightly decreases in the Ca one. We thus conclude that the
enhancement of in the La series is due to the electron filling of the
conduction band and a concomitant rising of the density of states at the Fermi
level.Comment: Revtex, 4 Journal pages, 2 figures, 1 tabl
Reduction of the Yb valence in YbAl3 nanoparticles
Measurements of specific heat, dc magnetic susceptibility, and Yb LII and LIII x-ray absorption near-edge
structure XANES and extended x-ray absorption fine structure EXAFS on YbAl3 milled alloys are reported.
X-ray diffraction patterns are consistent with a reduction in particle size down to 10 nm and an increase in the
lattice strain up to 0.4% for 120 h of milling time. A decrease in the mean valence from 2.86 for the unmilled
alloy to 2.70 for 120 h milled YbAl3 is obtained from the analysis of XANES spectra. From the analysis of
spectra in the EXAFS region, an increase in the mean-square disorder of neighbor distance with milling time
is detected in good agreement with the results of x-ray diffraction. Size effects strongly influence the magnetic
and thermal properties. The value for the maximum of the magnetic susceptibility decreases around 30% for
120 h milled alloy and an excess specific heat, with a peak around 40 K in the milled samples, is derived.
These changes in the physical properties along the milled YbAl3 alloys are associated with the reduction in
particle size. Such a reduction leads to the existence of a large number of Yb2+ atoms at the surface with
respect to the bulk affecting the overall electronic state
Evidence of anisotropic magnetic polarons in laSrMnO by neutron scattering and comparison with Ca-doped manganites
Elastic and inelastic neutron scattering experiments have been performed in a
LaSrMnO untwinned crystal, which exhibits an
antiferromagnetic canted magnetic structure with ferromagnetic layers.
The elastic small q scattering exhibits a modulation with an anisotropic
q-dependence. It can be pictured by ferromagnetic inhomogeneities or polarons
with a platelike shape, the largest size () and largest
inter-polaron distance ( 38) being within the ferromagnetic
layers. Comparison with observations performed on Ca-doped samples, which show
the growth of the magnetic polarons with doping, suggests that this growth is
faster for the Sr than for the Ca substitution. Below the gap of the spin wave
branch typical of the AF layered magnetic structure, an additional spin wave
branch reveals a ferromagnetic and isotropic coupling, already found in
Ca-doped samples. Its q-dependent intensity, very anisotropic, closely reflects
the ferromagnetic correlations found for the static clusters. All these results
agree with a two-phase electronic segregation occurring on a very small scale,
although some characteristics of a canted state are also observed suggesting a
weakly inhomogeneous state.Comment: 11 pages, 11 figure
- …