3,622 research outputs found

    Phase Behavior of Short Range Square Well Model

    Full text link
    Various Monte Carlo techniques are used to determine the complete phase diagrams of the square well model for the attractive ranges λ=1.15\lambda = 1.15 and λ=1.25\lambda = 1.25. The results for the latter case are in agreement with earlier Monte Carlo simulations for the fluid-fluid coexistence curve and yield new results for the liquidus-solidus lines. Our results for λ=1.15\lambda = 1.15 are new. We find that the fluid-fluid critical point is metastable for both cases, with the case λ=1.25\lambda = 1.25 being just below the threshold value for metastability. We compare our results with prior studies and with experimental results for the gamma-II crystallin.Comment: 8 figures, 1 tabl

    A Finite-Size Scaling Study of a Model of Globular Proteins

    Full text link
    Grand canonical Monte Carlo simulations are used to explore the metastable fluid-fluid coexistence curve of the modified Lennard-Jones model of globular proteins of ten Wolde and Frenkel (Science, v277, 1975 (1997)). Using both mixed-field finite-size scaling and histogram reweighting methods, the joint distribution of density and energy fluctuations is analyzed at coexistence to accurately determine the critical-point parameters. The subcritical coexistence region is explored using the recently developed hyper-parallel tempering Monte Carlo simulation method along with histogram reweighting to obtain the density distributions. The phase diagram for the metastable fluid-fluid coexistence curve is calculated in close proximity to the critical point, a region previously unattained by simulation.Comment: 17 pages, 10 figures, 2 Table

    Focusing of timelike worldsheets in a theory of strings

    Get PDF
    An analysis of the generalised Raychaudhuri equations for string world sheets is shown to lead to the notion of focusing of timelike worldsheets in the classical Nambu-Goto theory of strings. The conditions under which such effects can occur are obtained . Explicit solutions as well as the Cauchy initial value problem are discussed. The results closely resemble their counterparts in the theory of point particles which were obtained in the context of the analysis of spacetime singularities in General Relativity many years ago.Comment: 14 pages, RevTex, no figures, extended, to appear in Phys Rev

    The Planck-LFI flight model composite waveguides

    Get PDF
    The Low Frequency Instrument on board the PLANCK satellite is designed to give the most accurate map ever of the CMB anisotropy of the whole sky over a broad frequency band spanning 27 to 77 GHz. It is made of an array of 22 pseudo-correlation radiometers, composed of 11 actively cooled (20 K) Front End Modules (FEMs), and 11 Back End Modules (BEMs) at 300K. The connection between the two parts is made with rectangular Wave Guides. Considerations of different nature (thermal, electromagnetic and mechanical), imposed stringent requirements on the WGs characteristics and drove their design. From the thermal point of view, the WG should guarantee good insulation between the FEM and the BEM sections to avoid overloading the cryocooler. On the other hand it is essential that the signals do not undergo excessive attenuation through the WG. Finally, given the different positions of the FEM modules behind the focal surface and the mechanical constraints given by the surrounding structures, different mechanical designs were necessary. A composite configuration of Stainless Steel and Copper was selected to satisfy all the requirements. Given the complex shape and the considerable length (about 1.5-2 m), manufacturing and testing the WGs was a challenge. This work deals with the development of the LFI WGs, including the choice of the final configuration and of the fabrication process. It also describes the testing procedure adopted to fully characterize these components from the electromagnetic point of view and the space qualification process they underwent. Results obtained during the test campaign are reported and compared with the stringent requirements. The performance of the LFI WGs is in line with requirements, and the WGs were successfully space qualified.Comment: this paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jins

    Planck-LFI: Design and Performance of the 4 Kelvin Reference Load Unit

    Get PDF
    The LFI radiometers use a pseudo-correlation design where the signal from the sky is continuously compared with a stable reference signal, provided by a cryogenic reference load system. The reference unit is composed by small pyramidal horns, one for each radiometer, 22 in total, facing small absorbing targets, made of a commercial resin ECCOSORB CR (TM), cooled to approximately 4.5 K. Horns and targets are separated by a small gap to allow thermal decoupling. Target and horn design is optimized for each of the LFI bands, centered at 70, 44 and 30 GHz. Pyramidal horns are either machined inside the radiometer 20K module or connected via external electro-formed bended waveguides. The requirement of high stability of the reference signal imposed a careful design for the radiometric and thermal properties of the loads. Materials used for the manufacturing have been characterized for thermal, RF and mechanical properties. We describe in this paper the design and the performance of the reference system.Comment: This is an author-created, un-copyedited version of an article accepted for publication in JINST. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher authenticated version is available online at [10.1088/1748-0221/4/12/T12006]. 14 pages, 34 figure
    corecore