2,475 research outputs found

    Acceleration of cosmic rays and gamma-ray emission from supernova remnant/molecular cloud associations

    Get PDF
    The gamma-ray observations of molecular clouds associated with supernova remnants are considered one of the most promising ways to search for a solution of the problem of cosmic ray origin. Here we briefly review the status of the field, with particular emphasis on the theoretical and phenomenological aspects of the problem.Comment: Invited talk at SUGAR201

    The Epeak-Eiso plane of long Gamma Ray Bursts and selection effects

    Full text link
    We study the distribution of long Gamma Ray Bursts in the Ep-Eiso and in the Ep,obs-Fluence planes through an updated sample of 76 bursts, with measured redshift and spectral parameters, detected up to September 2007. We confirm the existence of a strong rest frame correlation Ep ~ Eiso^0.54+-0.01. Contrary to previous studies, no sign of evolution with redshift of the Ep-Eiso correlation (either its slope and normalisation) is found. The 76 bursts define a strong Ep,obs-Fluence correlation in the observer frame (Ep,obs ~ F^0.32+-0.05) with redshifts evenly distributed along this correlation. We study possible instrumental selection effects in the observer frame Ep,obs-Fluence plane. In particular, we concentrate on the minimum peak flux necessary to trigger a given GRB detector (trigger threshold) and the minimum fluence a burst must have to determine the value of Ep,obs (spectral analysis threshold). We find that the latter dominates in the Ep,obs-Fluence plane over the former. Our analysis shows, however, that these instrumental selection effects do not dominate for bursts detected before the launch of the Swift satellite, while the spectral analysis threshold is the dominant truncation effect of the Swift GRB sample (27 out of 76 events). This suggests that the Ep,obs-Fluence correlation defined by the pre--Swift sample could be affected by other, still not understood, selection effects. Besides we caution about the conclusions on the existence of the Ep,obs-Fluence correlation based on our Swift sample alone.Comment: To appear in MNRA

    Rate constant for the reaction of hydroxyl radical with formaldehyde over the temperature range 228-362 K

    Get PDF
    Absolute rate constants for the reaction OH ? H2CO measured over the temperature range 228-362 K using the flash photolysis-resonance fluorescence technique are given. The results are independent of variations in H2CO concentration, total pressure Ar concentration, and flash intensity (i.e., initial OH concentration). The rate constant is found to be invariant with temperature in this range, the best representation being k sub 1 = (1.05 ? or - 0.11) x 10 to the 11th power cu cm molecule(-1) s(-1) where the error is two standard deviations. This result is compared with previous absolute and relative determinations of k sub 1. The reaction is also discussed from a theoretical point of view

    Spectral analysis of Swift long GRBs with known redshift

    Full text link
    We study the spectral and energetics properties of 47 long-duration gamma-ray bursts (GRBs) with known redshift, all of them detected by the Swift satellite. Due to the narrow energy range (15-150 keV) of the Swift-BAT detector, the spectral fitting is reliable only for fitting models with 2 or 3 parameters. As high uncertainty and correlation among the errors is expected, a careful analysis of the errors is necessary. We fit both the power law (PL, 2 parameters) and cut--off power law (CPL, 3 parameters) models to the time-integrated spectra of the 47 bursts, and present the corresponding parameters, their uncertainties, and the correlations among the uncertainties. The CPL model is reliable only for 29 bursts for which we estimate the nuf_nu peak energy Epk. For these GRBs, we calculate the energy fluence and the rest- frame isotropic-equivalent radiated energy, Eiso, as well as the propagated uncertainties and correlations among them. We explore the distribution of our homogeneous sample of GRBs on the rest-frame diagram E'pk vs Eiso. We confirm a significant correlation between these two quantities (the "Amati" relation) and we verify that, within the uncertainty limits, no outliers are present. We also fit the spectra to a Band model with the high energy power law index frozen to -2.3, obtaining a rather good agreement with the "Amati" relation of non-Swift GRBs.Comment: 16 pages. To appear in MNRAS. Minor changes were introduced in this last versio

    The reaction NH2 + PH3 yields NH3 + PH2: Absolute rate constant measurement and implication for NH3 and PH3 photochemistry in the atmosphere of Jupiter

    Get PDF
    The rate constant is measured over the temperature interval 218-456 K using the technique of flash photolysis-laser-induced fluorescence. NH2 radicals are produced by the flash photolysis of ammonia highly diluted in argon, and the decay of fluorescent NH2 photons is measured by multiscaling techniques. For each of the five temperatures employed in the study, the results are shown to be independent of variations in PH3 concentration, total pressure (argon), and flash intensity. It is found that the rate constant results are best represented for T between 218 and 456 K by the expression k = (1.52 + or - 0.16) x 10 to the -12th exp(-928 + or - 56/T) cu cm per molecule per sec; the error quoted is 1 standard deviation. This is the first determination of the rate constant for the reaction NH2 + PH3. The data are compared with an estimate made in order to explain results of the radiolysis of NH3-PH3 mixtures. The Arrhenius parameters determined here for NH2 + PH3 are then constrasted with those for the corresponding reactions of H and OH with PH3

    Upper atmosphere research: Reaction rate and optical measurements

    Get PDF
    The objective is to provide photochemical, kinetic, and spectroscopic information necessary for photochemical models of the Earth's upper atmosphere and to examine reactions or reactants not presently in the models to either confirm the correctness of their exclusion or provide evidence to justify future inclusion in the models. New initiatives are being taken in technique development (many of them laser based) and in the application of established techniques to address gaps in the photochemical/kinetic data base, as well as to provide increasingly reliable information

    Novel substrates for Helium adsorption: Graphane and Graphene-Fluoride

    Full text link
    The discovery of fullerenes has stimulated extensive exploration of the resulting behavior of adsorbed films. Our study addresses the planar substrates graphene-fluoride (GF) and graphane (GH) in comparison to graphene. We present initial results concerning the potential energy, energy bands and low density behavior of 4He and 3He films on such different surfaces. For example, while graphene presents an adsorption potential that is qualitatively similar to that on graphite, GF and GH yield potentials with different symmetry, a number of adsorption sites double that on graphene/graphite and a larger corrugation for the adatom. In the case of GF, the lowest energy band width is similar to that on graphite but the He atom has a significantly larger effective mass and the adsorption energy is about three time that on graphite. Implications concerning the monolayer phase diagram of 4He are explored with the exact path integral ground state method. A commensurate ordered state similar to the sqrt{3} x sqrt{3} R30^o state on graphite is found the be unstable both on GF and on GH. The ground states of submonolayer 4He on both GF and GH are superfluids with a Bose Einstein condensate fraction of about 10%.Comment: 6 pages, 3 figures, LT26 proceedings, accepted for publication in Journal of Physics: Conference Serie

    T-violation in Kμ3K_{\mu3} decay in a general two-Higgs doublet model

    Get PDF
    We calculate the transverse muon polarization in the Kμ3+K^+_{\mu3} process arising from the Yukawa couplings of charged Higgs boson in a general two-Higgs doublet model where spontaneous violation of CP is presentComment: 6 pages, latex, accepted for publication in Phys. Rev.

    Rate constant for the reaction NH2 + NO from 216 to 480 K

    Get PDF
    The absolute rate constant was measured by the technique of flash photolysis-laser induced fluorescence (FP-LIF). NH2 radicals were produced by the flash photolysis of ammonia and the fluorescent NH2 photons were measured by multiscaling techniques. At each temperature, the results were independent of variations in total pressure, and flash intensity. The results are compared with previous determinations using the techniques of mass spectrometry, absorption spectroscopy, laser absorption spectroscopy, and laser induced fluorescence. The implications of the results are discussed with regard to combustion, post combustion, and atmospheric chemistry. The results are also discussed theoretically

    The reaction Cl + H2CO yields HCl + HCO: Decreased sensitivity of stratospheric ozone to chlorine perturbations

    Get PDF
    The absolute rate constant for the reaction Cl + H2CO yields HCl + HCO was determined by the flash-photolysis resonance fluorescence method to be 7.5 plus or minus 0.9 (2 sigma) times 10 to the minus 11th power cu cm/molecule sec at 298 K and to have a negligible temperature dependence. This rate which is more than 2000 times faster than the rate of Cl + CH4 indicates that formaldehyde (H2CO) will compete significantly with methane (CH4) for the conversion of active chlorine in the stratosphere to the inactive reservoir HCl. Chlorine will thus be a less efficient destroyer of stratosphere ozone than previously believed. Ambient stratospheric ozone will depend less on the ambient chlorine amount and the predicted response to chlorine perturbations will be lessened. One-dimensional eddy-diffusion photochemical model calculations indicate a factor of 1.1 less sensitivity to chlorine than recently reported. For a steady-state CFM release at 1975 rates (750,000 tons/year) the eventual ozone depletion is now calculated to be 14%
    • …
    corecore