21,371 research outputs found

    Quantum Resonances of Weakly Linked, Mesoscopic, Superconducting Dots

    Full text link
    We examine quantum properties of mesoscopic, Josephson coupled superconducting dots, in the limit that charging effects and quantization of energy levels within the dots are negligible, but quasi-particle transmission into the weak link is not. We demonstrate that quasi-particle resonances lead to current-phase relations, which deviate markedly from those of weak links connecting macroscopic superconductors. Results for the steady state dc Josephson current of two coupled dots are presented.Comment: Tex, 3 figures available on request to [email protected] (Andy Martin

    Peculiar Nature of Snake States in Graphene

    Full text link
    We study the dynamics of the electrons in a non-uniform magnetic field applied perpendicular to a graphene sheet in the low energy limit when the excitation states can be described by a Dirac type Hamiltonian. We show that as compared to the two-dimensional electron gas (2DEG) snake states in graphene exibit peculiar properties related to the underlying dynamics of the Dirac fermions. The current carried by snake states is locally uncompensated even if the Fermi energy lies between the first non-zero energy Landau levels of the conduction and valence bands. The nature of these states is studied by calculating the current density distribution. It is shown that besides the snake states in finite samples surface states also exist.Comment: 4 pages, 5 figure

    Determination of failure limits for sterilizable solid rocket motor

    Get PDF
    A structural evaluation to establish probable failure limits and a series of environmental tests involving temperature cycling, sustained acceleration, and vibration were conducted on an 18-inch diameter solid rocket motor. Despite the fact that thermal, acceleration and vibration loads representing a severe overtest of conventional environmental requirements were imposed on the sterilizable motor, no structural failure of the grain or flexible support system was detected. The following significant conclusions are considered justified. It is concluded that: (1) the flexible grain retention system, which permitted heat sterilization at 275 F on the test motor, can readily be adopted to meet the environmental requirements of an operational motor design, and (2) if further substantiation of structural integrity is desired, the motor used is considered acceptable for static firing

    Rubidium and lead abundances in giant stars of the globular clusters M 13 and NGC 6752

    Full text link
    We present measurements of the neutron-capture elements Rb and Pb in five giant stars of the globular cluster NGC 6752 and Pb measurements in four giants of the globular cluster M 13. The abundances were derived by comparing synthetic spectra with high resolution, high signal-to-noise ratio spectra obtained using HDS on the Subaru telescope and MIKE on the Magellan telescope. The program stars span the range of the O-Al abundance variation. In NGC 6752, the mean abundances are [Rb/Fe] = -0.17 +/- 0.06 (sigma = 0.14), [Rb/Zr] = -0.12 +/- 0.06 (sigma = 0.13), and [Pb/Fe] = -0.17 +/- 0.04 (sigma = 0.08). In M 13 the mean abundance is [Pb/Fe] = -0.28 +/- 0.03 (sigma = 0.06). Within the measurement uncertainties, we find no evidence for a star-to-star variation for either Rb or Pb within these clusters. None of the abundance ratios [Rb/Fe], [Rb/Zr], or [Pb/Fe] are correlated with the Al abundance. NGC 6752 may have slightly lower abundances of [Rb/Fe] and [Rb/Zr] compared to the small sample of field stars at the same metallicity. For M 13 and NGC 6752 the Pb abundances are in accord with predictions from a Galactic chemical evolution model. If metal-poor intermediate-mass asymptotic giant branch stars did produce the globular cluster abundance anomalies, then such stars do not synthesize significant quantities of Rb or Pb. Alternatively, if such stars do synthesize large amounts of Rb or Pb, then they are not responsible for the abundance anomalies seen in globular clusters.Comment: Accepted for publication in Ap

    Demonstration of a sterilizable solid rocket motor system

    Get PDF
    A solid propellant rocket motor containing 60.9 Kg (134-lb) of propellant was successfully static fired after being subjected to eight heat sterilization cycles (three 54-hour cycles plus five 40-hour cycles) at 125 C (257 F). The test motor, a modified SVM-3 chamber, incorporated a flexible grain retention system of EPR rubber to relieve thermal shrinkage stresses. The propellant used in the motor was ANB-3438, and 84 wt% solids system (18 wt% aluminum) containing 66 wt% stabilized ammonium perchlorate oxidizer and a saturated hydroxylterminated polybutadiene binder. Bonding of the propellant to the EPR insulation (GenGard V-4030) was provided by the use of SD-886, an epoxy urethane restriction

    Lithium abundances in nearby FGK dwarf and subgiant stars: internal destruction, Galactic chemical evolution, and exoplanets

    Full text link
    We derive atmospheric parameters and lithium abundances for 671 stars and include our measurements in a literature compilation of 1381 dwarf and subgiant stars. First, a "lithium desert" in the effective temperature (Teff) versus lithium abundance (A_Li) plane is observed such that no stars with Teff~6075 K and A_Li~1.8 are found. We speculate that most of the stars on the low A_Li side of the desert have experienced a short-lived period of severe surface lithium destruction as main-sequence or subgiant stars. Next, we search for differences in the lithium content of thin-disk and thick-disk stars, but we find that internal processes have erased from the stellar photospheres their possibly different histories of lithium enrichment. Nevertheless, we note that the maximum lithium abundance of thick-disk stars is nearly constant from [Fe/H]=-1.0 to -0.1, at a value that is similar to that measured in very metal-poor halo stars (A_Li~2.2). Finally, differences in the lithium abundance distribution of known planet-host stars relative to otherwise ordinary stars appear when restricting the samples to narrow ranges of Teff or mass, but they are fully explained by age and metallicity biases. We confirm the lack of a connection between low lithium abundance and planets. However, we find that no low A_Li planet-hosts are found in the desert Teff window. Provided that subtle sample biases are not responsible for this observation, this suggests that the presence of gas giant planets inhibit the mechanism responsible for the lithium desert.Comment: ApJ, in press. Complete Tables 1 and 3 are available upon reques

    Giant Conductance Oscillations In Mesoscopic Andreev Interferometers

    Full text link
    We analyze the electrical conductance G(ϕ)G(\phi) of a two-dimensional, phase coherent structure in contact with two superconductors, which is known to be an oscillatory function of the phase difference ϕ\phi between the superconductors. It is predicted that for a metallic sample, the amplitude of oscillation is enhanced by placing a normal barrier at the interface and that, by tuning the strength of the barrier, can be orders of magnitude greater than values observed in recent experiments. Giant oscillations can also be obtained without a barrier, provided a crucial sum rule is broken. This can be achieved by disorder induced normal scattering. In the absence of zero phase inter-channel scattering, the conductance possesses a zero phase minimum.Comment: 4 pages of Revtex, 6 figures available on reques
    corecore