We derive atmospheric parameters and lithium abundances for 671 stars and
include our measurements in a literature compilation of 1381 dwarf and subgiant
stars. First, a "lithium desert" in the effective temperature (Teff) versus
lithium abundance (A_Li) plane is observed such that no stars with Teff~6075 K
and A_Li~1.8 are found. We speculate that most of the stars on the low A_Li
side of the desert have experienced a short-lived period of severe surface
lithium destruction as main-sequence or subgiant stars. Next, we search for
differences in the lithium content of thin-disk and thick-disk stars, but we
find that internal processes have erased from the stellar photospheres their
possibly different histories of lithium enrichment. Nevertheless, we note that
the maximum lithium abundance of thick-disk stars is nearly constant from
[Fe/H]=-1.0 to -0.1, at a value that is similar to that measured in very
metal-poor halo stars (A_Li~2.2). Finally, differences in the lithium abundance
distribution of known planet-host stars relative to otherwise ordinary stars
appear when restricting the samples to narrow ranges of Teff or mass, but they
are fully explained by age and metallicity biases. We confirm the lack of a
connection between low lithium abundance and planets. However, we find that no
low A_Li planet-hosts are found in the desert Teff window. Provided that subtle
sample biases are not responsible for this observation, this suggests that the
presence of gas giant planets inhibit the mechanism responsible for the lithium
desert.Comment: ApJ, in press. Complete Tables 1 and 3 are available upon reques