5,439 research outputs found
Microstructural characterization of AISI 431 martensitic stainless steel laser-deposited coatings
High cooling rates during laser cladding of stainless steels may alter the microstructure and phase constitution of the claddings and consequently change their functional properties. In this research, solidification structures and solid state phase transformation products in single and multi layer AISI 431 martensitic stainless steel coatings deposited by laser cladding at different processing speeds are investigated by optical microscopy, Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), orientation imaging microscopy (OIM), ternary phase diagram, Schaeffler and TTT diagrams. The results of this study show how partitionless solidification and higher solidification rates alter the microstructure and phase constitution of martensitic stainless steel laser deposited coatings. In addition, it is shown that while different cladding speeds have no effect on austenite–martensite orientation relationship in the coatings, increasing the cladding speed has resulted in a reduction of hardness in deposited coatings which is in contrast to the common idea about obtaining higher hardness values at higher cladding speeds.
Aging and partial body weight support affects gait variability
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Time-resolved broadband analysis of slow-light propagation and superluminal transmission of electromagnetic waves in three-dimensional photonic crystals
A time-resolved analysis of the amplitude and phase of THz pulses propagating
through three-dimensional photonic crystals is presented. Single-cycle pulses
of THz radiation allow measurements over a wide frequency range, spanning more
than an octave below, at and above the bandgap of strongly dispersive photonic
crystals. Transmission data provide evidence for slow group velocities at the
photonic band edges and for superluminal transmission at frequencies in the
gap. Our experimental results are in good agreement with
finite-difference-time-domain simulations.Comment: 7 pages, 11 figure
Parameter Estimation and Quantitative Parametric Linkage Analysis with GENEHUNTER-QMOD
Objective: We present a parametric method for linkage analysis of quantitative phenotypes. The method provides a test for linkage as well as an estimate of different phenotype parameters. We have implemented our new method in the program GENEHUNTER-QMOD and evaluated its properties by performing simulations. Methods: The phenotype is modeled as a normally distributed variable, with a separate distribution for each genotype. Parameter estimates are obtained by maximizing the LOD score over the normal distribution parameters with a gradient-based optimization called PGRAD method. Results: The PGRAD method has lower power to detect linkage than the variance components analysis (VCA) in case of a normal distribution and small pedigrees. However, it outperforms the VCA and Haseman-Elston regression for extended pedigrees, nonrandomly ascertained data and non-normally distributed phenotypes. Here, the higher power even goes along with conservativeness, while the VCA has an inflated type I error. Parameter estimation tends to underestimate residual variances but performs better for expectation values of the phenotype distributions. Conclusion: With GENEHUNTER-QMOD, a powerful new tool is provided to explicitly model quantitative phenotypes in the context of linkage analysis. It is freely available at http://www.helmholtz-muenchen.de/genepi/downloads. Copyright (C) 2012 S. Karger AG, Base
Effects of a burst of formation of first-generation stars on the evolution of galaxies
First-generation (Population III) stars in the universe play an important
role inearly enrichment of heavy elements in galaxies and intergalactic medium
and thus affect the history of galaxies. The physical and chemical properties
of primordial gas clouds are significantly different from those of present-day
gas clouds observed in the nearby universe because the primordial gas clouds do
not contain any heavy elements which are important coolants in the gas.
Previous theoretical considerations have suggested that typical masses of the
first-generation stars are between several and
although it has been argued that the formation of very massive stars (e.g., ) is also likely. If stars with several are most popular
ones at the epoch of galaxy formation, most stars will evolve to hot (e.g.,
K), luminous () stars with gaseous and dusty
envelope prior to going to die as white dwarf stars. Although the duration of
this phase is short (e.g., yr), such evolved stars could contribute
both to the ionization of gas in galaxies and to the production of a lot of
dust grains if the formation of intermediate-mass stars is highly enhanced. We
compare gaseous emission-line properties of such nebulae with some interesting
high-redshift galaxies such asIRAS F10214+4724 and powerful radio galaxies.Comment: 25 pages, 7 figures, ApJ, in pres
Silicon-organic hybrid electro-optical devices
Organic materials combined with strongly guiding silicon waveguides open the route to highly efficient electro-optical devices. Modulators based on the so-called silicon-organic hybrid (SOH) platform have only recently shown frequency responses up to 100 GHz, high-speed operation beyond 112 Gbit/s with fJ/bit power consumption. In this paper, we review the SOH platform and discuss important devices such as Mach-Zehnder and IQ-modulators based on the linear electro-optic effect. We further show liquid-crystal phase-shifters with a voltage-length product as low as V pi L = 0.06 V.mm and sub-mu W power consumption as required for slow optical switching or tuning optical filters and devices
Nonequilibrium wetting of finite samples
As a canonical model for wetting far from thermal equilibrium we study a
Kardar-Parisi-Zhang interface growing on top of a hard-core substrate.
Depending on the average growth velocity the model exhibits a non-equilibrium
wetting transition which is characterized by an additional surface critical
exponent theta. Simulating the single-step model in one spatial dimension we
provide accurate numerical estimates for theta and investigate the distribution
of contact points between the substrate and the interface as a function of
time. Moreover, we study the influence of finite-size effects, in particular
the time needed until a finite substrate is completely covered by the wetting
layer for the first time.Comment: 17 pages, 8 figures, revisio
Inelastic interaction mean free path of negative pions in tungsten
The inelastic interaction mean free paths lambda of 5, 10, and 15 GeV/c pions were measured by determining the distribution of first interaction locations in a modular tungsten-scintillator ionization spectrometer. In addition to commonly used interaction signatures of a few (2-5) particles in two or three consecutive modules, a chi2 distribution is used to calculate the probability that the first interaction occurred at a specific depth in the spectrometer. This latter technique seems to be more reliable than use of the simpler criteria. No significant dependence of lambda on energy was observed. In tungsten, lambda for pions is 206 plus or minus 6 g/sq cm
Multiscale Random-Walk Algorithm for Simulating Interfacial Pattern Formation
We present a novel computational method to simulate accurately a wide range
of interfacial patterns whose growth is limited by a large scale diffusion
field. To illustrate the computational power of this method, we demonstrate
that it can be used to simulate three-dimensional dendritic growth in a
previously unreachable range of low undercoolings that is of direct
experimental relevance.Comment: 4 pages RevTex, 6 eps figures; substantial changes in presentation,
but results and conclusions remain the sam
- …