2,217 research outputs found
Formation of Low Threshold Voltage Microlasers
Vertical cavity surface emitting lasers (VCSELs) with threshold voltages of 1.7V have been fabricated. The resistance-area product in these new vertical cavity lasers is comparable to that of edge-emitting lasers, and threshold currents as low as 3 mA have been measured. Molecular beam epitaxy was used to grow n-type mirrors, a quantum well active region, and a heavily Be-doped p-contact. After contact definition and alloying, passive high-reflectivity mirrors were deposited by reactive sputter deposition of SiO2/Si3N4 to complete the laser cavity
Room-Temperature Continuous-Wave Vertical-Cavity Single-Quantum-Well Microlaser Diodes
Room-temperature continuous and pulsed lasing of vertical-cavity, single-quantum-well, surface-emitting microlasers is achieved at ~983nm. The active Ga[sub][0-8]In[sub][0-2]As single quantum well is 100 [angstroms] thick. These microlasers have the smallest gain medium volumes among lasers ever built. The entire laser structure is grown by molecular beam epitaxy and the microlasers are formed by chemically assisted ion-beam etching. The microlasers are 3-50-ÎŒm across. The minimum threshold currents are 1.1 mA (pulsed) and 1.5 mA (CW)
Researcher's guide to the NASA Ames Flight Simulator for Advanced Aircraft (FSAA)
Performance, limitations, supporting software, and current checkout and operating procedures are presented for the flight simulator, in terms useful to the researcher who intends to use it. Suggestions to help the researcher prepare the experimental plan are also given. The FSAA's central computer, cockpit, and visual and motion systems are addressed individually but their interaction is considered as well. Data required, available options, user responsibilities, and occupancy procedures are given in a form that facilitates the initial communication required with the NASA operations' group
Low-Threshold Electrically Pumps Vertical-Cavity Surface-Emitting Microlasers
Vertical-cavity electrically driven lasers with three GaInAs
quantum wells and diameters of several ÎŒm exhibit room-temperature pulsed current thresholds as low as 1.3mA with 958 nm output wavelength
Observation of backflow in the switch-on dynamics of a hybrid aligned nematic
Copyright © 2004 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters 84 (2004) and may be found at http://link.aip.org/link/?APPLAB/84/46/1The optical convergent-beam technique is used to measure, in 0.3 ms steps, the response of the director in a 4.6-”m-thick ZLI-2293 filled hybrid aligned nematic cell when a 10 kHz, 7 Vrms ac voltage is applied to the cell. The total time taken for the reorientation process is 2.4 ms, with backflow observed during the first 1.5 ms after the application of the voltage. The measured director profiles show excellent agreement with theoretical profiles produced from the LeslieâEriksenâParodi theory using typical values for the viscosity coefficients. Fluid velocity profiles within the cell are also modeled
Backflow in the relaxation of a hybrid aligned nematic cell
Copyright © 2003 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters 82 (2003) and may be found at http://link.aip.org/link/?APPLAB/82/3156/1The optical convergent-beam technique has been used to measure the changing director profile in a 4.6 ”m ZLI-2293 filled hybrid aligned nematic cell when a 7 Vrms ac voltage was removed. The relaxation process has been recorded in 0.3 ms time steps allowing the detailed director backflow occurring in the initial 9 ms of the reorientation process to be quantified. The measured tilt profiles over the 60 ms total relaxation period were compared to model tilt profiles produced using the LeslieâEriksenâParodi theory, and excellent agreement was found. Further analysis shows that the backflow is dominated by the viscosity coefficient η1 and the overall relaxation is governed by the coefficient Îł1
Effectiveness of group-based self-management education for individuals with Type 2 diabetes:A systematic review with meta-analyses and meta-regression
Aims:
Patient education for the management of Type 2 diabetes can be delivered in various forms, with the goal of promoting and supporting positive self-management behaviours. This systematic review aimed to determine the effectiveness of group-based interventions compared with individual interventions or usual care for improving clinical, lifestyle and psychosocial outcomes in people with Type 2 diabetes.
Methods:
Six electronic databases were searched. Group-based education programmes for adults with Type 2 diabetes that measured glycated haemoglobin (HbA1c) and followed participants for â„ 6 months were included. The primary outcome was HbA1c, and secondary outcomes included fasting blood glucose, weight, body mass index, waist circumference, blood pressure, blood lipid profiles, diabetes knowledge and self-efficacy.
Results:
Fifty-three publications describing 47 studies were included (n = 8533 participants). Greater reductions in HbA1c occurred in group-based education compared with controls at 6â10 months [n = 30 studies; mean difference (MD) = 3 mmol/mol (0.3%); 95% confidence interval (CI): â0.48, â0.15; P = 0.0002], 12â14 months [n = 27 studies; MD = 4 mmol/mol (0.3%); 95% CI: â0.49, â0.17; P < 0.0001], 18 months [n = 3 studies; MD = 8 mmol/mol (0.7%); 95% CI: â1.26, â0.18; P = 0.009] and 36â48 months [n = 5 studies; MD = 10 mmol/mol (0.9%); 95% CI: â1.52, â0.34; P = 0.002], but not at 24 months. Outcomes also favoured group-based education for fasting blood glucose, body weight, waist circumference, triglyceride levels and diabetes knowledge, but not at all time points. Interventions facilitated by a single discipline, multidisciplinary teams or health professionals with peer supporters resulted in improved outcomes in HbA1c when compared with peer-led interventions.
Conclusions:
Group-based education interventions are more effective than usual care, waiting list control and individual education at improving clinical, lifestyle and psychosocial outcomes in people with Type 2 diabetes.No Full Tex
Low-Voltage-Threshold Microlasers
We have reduced the voltage required for threshold in vertical cavity surface emitting lasers (VCSEL) to 1.7 V [l], the lowest yet reported for a CW-operating VCSEL [2,3]. Room-temperature current threshold was 3 mA pulsed, 4 mA CW. This advance in VCSEL technology leads to manageable heat dissipation for high packing densities. It was achieved in a structure which can be further optimized for high wallplug efficiency and high powers. Furthermore the thickness of the molecular beam epitaxially (MBE) grown portion of the structure was reduced by about 1.5 ÎŒm compared to conventional VCSELs, resulting in decreased MBE costs, significantly shallower processing depths and easier integration of VCSELs with transistors or other electronics. The (resistance x area) products of our VCSELs are nearly as low as those reported for high-power edge-emitting lasers. MBE was used to grown-doped Al_(0.15)Ga_(0.85)As/GaAs bottom mirror layers, the active region containing 3 GaAs quantum wells, and a 1-ÎŒm-thick p-doped top contact layer. 12 pairs of alternating SiO_2/Si_3N_4 layers formed a high-reflectivity mirror which completed the laser cavity. The reactive sputter-deposited mirrors produce reflectivities of 98.3% for 9.5 pairs [3]. Individual laser elements were defined by ion milling of mesas through the p-n junction, followed by planarization with SiO_2 to define the current path. Then, Au-Zn p-contacts were
deposited around the mesa tops and alloyed for current injection. A final ion-milling step was used to isolate individual contacts. In this way microlasers with diameters ranging from 7.5-25 ÎŒm were fabricated and measured
Optimized Large-Scale CMB Likelihood And Quadratic Maximum Likelihood Power Spectrum Estimation
We revisit the problem of exact CMB likelihood and power spectrum estimation
with the goal of minimizing computational cost through linear compression. This
idea was originally proposed for CMB purposes by Tegmark et al.\ (1997), and
here we develop it into a fully working computational framework for large-scale
polarization analysis, adopting \WMAP\ as a worked example. We compare five
different linear bases (pixel space, harmonic space, noise covariance
eigenvectors, signal-to-noise covariance eigenvectors and signal-plus-noise
covariance eigenvectors) in terms of compression efficiency, and find that the
computationally most efficient basis is the signal-to-noise eigenvector basis,
which is closely related to the Karhunen-Loeve and Principal Component
transforms, in agreement with previous suggestions. For this basis, the
information in 6836 unmasked \WMAP\ sky map pixels can be compressed into a
smaller set of 3102 modes, with a maximum error increase of any single
multipole of 3.8\% at , and a maximum shift in the mean values of a
joint distribution of an amplitude--tilt model of 0.006. This
compression reduces the computational cost of a single likelihood evaluation by
a factor of 5, from 38 to 7.5 CPU seconds, and it also results in a more robust
likelihood by implicitly regularizing nearly degenerate modes. Finally, we use
the same compression framework to formulate a numerically stable and
computationally efficient variation of the Quadratic Maximum Likelihood
implementation that requires less than 3 GB of memory and 2 CPU minutes per
iteration for , rendering low- QML CMB power spectrum
analysis fully tractable on a standard laptop.Comment: 13 pages, 13 figures, accepted by ApJ
- âŠ