4,442 research outputs found

    Bayesian model selection for electromagnetic kaon production on the nucleon

    Get PDF
    We present the results of a Bayesian analysis of a Regge model to describe the background contribution for K+ Lambda and K+ Sigma0 photoproduction. The model is based on the exchange of K+(494) and K*+(892) trajectories in the t-channel. We utilise the Bayesian evidence Z to determine the best model variant for each channel. The Bayesian evidence integrals were calculated using the Nested Sampling algorithm. For different prior widths, we find decisive Bayesian evidence (\Delta ln Z ~ 24) for a K+ Lambda photoproduction Regge model with a positive vector coupling and a negative tensor coupling constant for the K*+(892) trajectory, and a rotating phase factor for both trajectories. Using the chi^2 minimisation method, one could not draw this conclusion from the same dataset. For the K+ Sigma0 photoproduction Regge model, on the other hand, the difference between the evidence integrals is insufficient to pinpoint one model variant.Comment: 13 pages, 4 figure

    Mapping the Shores of the Brown Dwarf Desert. I. Upper Scorpius

    Get PDF
    We present the results of a survey for stellar and substellar companions to 82 young stars in the nearby OB association Upper Scorpius. This survey used nonredundant aperture mask interferometry to achieve typical contrast limits of ΔK ~5-6 at the diffraction limit, revealing 12 new binary companions that lay below the detection limits of traditional high-resolution imaging; we also summarize a complementary snapshot imaging survey that discovered seven directly resolved companions. The overall frequency of binary companions (~35 +5 -4% at separations of 6-435 AU) appears to be equivalent to field stars of similar mass, but companions could be more common among lower mass stars than for the field. The companion mass function has statistically significant differences compared to several suggested mass functions for the field, and we suggest an alternate lognormal parameterization of the mass function. Our survey limits encompass the entire brown dwarf mass range, but we only detected a single companion that might be a brown dwarf; this deficit resembles the so-called brown dwarf desert that has been observed by radial velocity planet searches. Finally, our survey’s deep detection limits extend into the top of the planetary mass function, reaching 8-12 MJup for half of our sample. We have not identified any planetary companions at high confidence (≳99.5%), but we have identified four candidate companions at lower confidence (≳97.5%) that merit additional follow-up to confirm or disprove their existence

    The Role of Multiplicity in Disk Evolution and Planet Formation

    Get PDF
    The past decade has seen a revolution in our understanding of protoplanetary disk evolution and planet formation in single star systems. However, the majority of solar-type stars form in binary systems, so the impact of binary companions on protoplanetary disks is an important element in our understanding of planet formation. We have compiled a combined multiplicity/disk census of Taurus-Auriga, plus a restricted sample of close binaries in other regions, in order to explore the role of multiplicity in disk evolution. Our results imply that the tidal influence of a close (<40 AU) binary companion significantly hastens the process of protoplanetary disk dispersal, as ~2/3 of all close binaries promptly disperse their disks within <1 Myr after formation. However, prompt disk dispersal only occurs for a small fraction of wide binaries and single stars, with ~80%-90% retaining their disks for at least ~2--3 Myr (but rarely for more than ~5 Myr). Our new constraints on the disk clearing timescale have significant implications for giant planet formation; most single stars have 3--5 Myr within which to form giant planets, whereas most close binary systems would have to form giant planets within <1 Myr. If core accretion is the primary mode for giant planet formation, then gas giants in close binaries should be rare. Conversely, since almost all single stars have a similar period of time within which to form gas giants, their relative rarity in RV surveys indicates either that the giant planet formation timescale is very well-matched to the disk dispersal timescale or that features beyond the disk lifetime set the likelihood of giant planet formation.Comment: Accepted to ApJ; 15 pages, 3 figures, 3 tables in emulateapj forma

    Two Wide Planetary-mass Companions to Solar-type Stars in Upper Scorpius

    Get PDF
    At wide separations, planetary-mass and brown dwarf companions to solar-type stars occupy a curious region of parameter space not obviously linked to binary star formation or solar system scale planet formation. These companions provide insight into the extreme case of companion formation (either binary or planetary), and due to their relative ease of observation when compared to close companions, they offer a useful template for our expectations of more typical planets. We present the results from an adaptive optics imaging survey for wide (~50–500 AU) companions to solar-type stars in Upper Scorpius. We report one new discovery of a ~14 M_J companion around GSC 06214−00210and confirm that the candidate planetary-mass companion 1RXS J160929.1−210524 detected by Lafrenière et al. is in fact comoving with its primary star. In our survey, these two detections correspond to ~4% of solar-type stars having companions in the 6–20 M_J mass and ~200–500 AU separation range. This figure is higher than would be expected if brown dwarfs and planetary-mass companions were drawn from an extrapolation of the binary mass function. Finally, we discuss implications for the formation of these objects

    A Comparison of Inverse Simulation-Based Fault Detection in a Simple Robotic Rover with a Traditional Model-Based Method

    Get PDF
    Robotic rovers which are designed to work in extra-terrestrial environments present a unique challenge in terms of the reliability and availability of systems throughout the mission. Should some fault occur, with the nearest human potentially millions of kilometres away, detection and identification of the fault must be performed solely by the robot and its subsystems. Faults in the system sensors are relatively straightforward to detect, through the residuals produced by comparison of the system output with that of a simple model. However, faults in the input, that is, the actuators of the system, are harder to detect. A step change in the input signal, caused potentially by the loss of an actuator, can propagate through the system, resulting in complex residuals in multiple outputs. These residuals can be difficult to isolate or distinguish from residuals caused by environmental disturbances. While a more complex fault detection method or additional sensors could be used to solve these issues, an alternative is presented here. Using inverse simulation (InvSim), the inputs and outputs of the mathematical model of the rover system are reversed. Thus, for a desired trajectory, the corresponding actuator inputs are obtained. A step fault near the input then manifests itself as a step change in the residual between the system inputs and the input trajectory obtained through inverse simulation. This approach avoids the need for additional hardware on a mass- and power-critical system such as the rover. The InvSim fault detection method is applied to a simple four-wheeled rover in simulation. Additive system faults and an external disturbance force and are applied to the vehicle in turn, such that the dynamic response and sensor output of the rover are impacted. Basic model-based fault detection is then employed to provide output residuals which may be analysed to provide information on the fault/disturbance. InvSim-based fault detection is then employed, similarly providing \textit{input} residuals which provide further information on the fault/disturbance. The input residuals are shown to provide clearer information on the location and magnitude of an input fault than the output residuals. Additionally, they can allow faults to be more clearly discriminated from environmental disturbances

    On Tractable Exponential Sums

    Full text link
    We consider the problem of evaluating certain exponential sums. These sums take the form x1,...,xnZNef(x1,...,xn)2πi/N\sum_{x_1,...,x_n \in Z_N} e^{f(x_1,...,x_n) {2 \pi i / N}} , where each x_i is summed over a ring Z_N, and f(x_1,...,x_n) is a multivariate polynomial with integer coefficients. We show that the sum can be evaluated in polynomial time in n and log N when f is a quadratic polynomial. This is true even when the factorization of N is unknown. Previously, this was known for a prime modulus N. On the other hand, for very specific families of polynomials of degree \ge 3, we show the problem is #P-hard, even for any fixed prime or prime power modulus. This leads to a complexity dichotomy theorem - a complete classification of each problem to be either computable in polynomial time or #P-hard - for a class of exponential sums. These sums arise in the classifications of graph homomorphisms and some other counting CSP type problems, and these results lead to complexity dichotomy theorems. For the polynomial-time algorithm, Gauss sums form the basic building blocks. For the hardness results, we prove group-theoretic necessary conditions for tractability. These tests imply that the problem is #P-hard for even very restricted families of simple cubic polynomials over fixed modulus N

    Editorial

    Get PDF
    We commence this edition with an invited paper by David DeMatteo, Suraji Wagage, and Jaymes Fairfax-Columbo on cyberstalking. Their paper considers the role of law and public opinion in this rapidly evolving area of study. One of the most interesting findings represents the difference between public opinion and the legal concept of cyberstalking; public opinion does not support the (legal) suggestion that cyberstalking should be considered alongside more general stalking. This reflects a move in the literature more generally that considers cybercrime distinct in many ways from contact offending. Indeed, it parallels considerably with the cyberbullying literature, which some would argue is simply another term for cyberstalking. What DeMatteo and colleagues present, however, is an interesting outline of current opinion in this area of work. The term “cyber action” is also used on occasion and this appears a far less emotive term to use than stalking. The lack of alignment between legal and public opinion provides a marked indication that this is perhaps the next area to focus on

    Comparison of nonlinear dynamic inversion and inverse simulation

    Get PDF
    No abstract available
    corecore