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Abstract

We present the results of a Bayesian analysis of a Regge model to describe the
background contribution for Kt A and K*+X° photoproduction. The model is
based on the exchange of K (494) and K**(892) trajectories in the t-channel.
We utilise the Bayesian evidence Z to determine the best model variant for each
channel. The Bayesian evidence integrals were calculated using the Nested Sam-
pling algorithm. For different prior widths, we find decisive Bayesian evidence
(Aln Z = 24) for a KT A photoproduction Regge model with a positive vector
coupling and a negative tensor coupling constant for the K**(892) trajectory,
and a rotating phase factor for both trajectories. Using the y? minimisation
method, one could not draw this conclusion from the same dataset. For the
K*%9 photoproduction Regge model, on the other hand, the difference between
the evidence integrals is insufficient to pinpoint one model variant.
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1. Introduction

To resolve the structure of the nucleon, many models based on effective
degrees of freedom have been developed. One of the more popular ones is the
constituent quark model (CQM), which presents the nucleon as a system of
three constituent quarks [1]. The CQM, however, predicts far more resonances
than confirmed by experiment. This may lead one to turn to other models that
predict fewer resonances [2].

Alternatively, this discrepancy may arise because missing resonances do not
couple to the channels commonly used for nucleon spectroscopy, such as the
pion-nucleon (7N) channel. This issue can be addressed by using an electro-
magnetic probe instead of a pion, and by examining decay channels other than
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mN. Hence, electromagnetic open strangeness or kaon-hyperon (KY') produc-
tion is suggested as a key process to seek for unobserved resonances. The analy-
sis of this process faces other difficulties, such as a small cross section and a high
threshold [3, 4]. Unlike threshold one-pion photoproduction, which is dominated
by the A(1232) resonance, the K'Y reaction channel opens in a resonance-rich
energy region. The identification of those resonances constitutes a major chal-
lenge in modelling K'Y production. A second characteristic of this channel is
the great importance of the non-resonant or background contributions. Hence,
a correct determination of the background is crucial for a correct assessment of
the resonance contributions.

The earliest studies of the KY production focused on the estimation of
coupling constants within a single model variant [5, 6]. Only when the emphasis
came to lie on identifying missing resonances did the focus shift from parameter
estimation to model comparison. The statistical tools, however, have not been
adapted to this new objective. The least-squares method in particular has often
been stretched beyond its limits, being used not only as an optimisation tool,
but also as a model selection criterion. In this Letter, we present the Bayesian
evidence computation, a method based on the principles of Bayesian inference,
as a more robust and well-founded tool for model comparison.

The outline of this Letter is as follows. The next section introduces the
Bayesian evidence and the Nested Sampling (NS) algorithm for evidence com-
putation. The effectiveness of this algorithm is subsequently demonstrated for
a Regge model in Section 3 and the results are discussed in Section 4. The
conclusions and outlook are given in Section 5.

2. Bayesian analysis

Bayesian analysis is an established tool for model selection in astronomy
and cosmology, and is gaining momentum in other fields [7, 8]. The potential
of this method in hadronic physics was recently demonstrated in a Bayesian
analysis of pentaquark data by Ireland et al. [9], and for parameter estimation
in effective field theories by Schindler et al. [10]. The quantity of interest for
model comparison is the Bayesian evidence, which will be derived below.

One can straightforwardly derive the posterior probability of a model M,
given a set of experimental data {d;}. Indeed, using Bayes’ theorem, one can
write this probability as

P({dy} [M) P(M)
P({dx})

The quantity P({dy} | M) is referred to as the marginal likelihood or the Bayesian
evidence (Z). If the model M can be parametrised with a set aps, this proba-
bility can be written as an integral over all possible values of these parameters.
This procedure, which is referred to as marginalisation, yields the following

P(M|{dr}) =

(1)



Table 1: Jeffreys’ scale for the natural logarithms of evidence ratios Aln Z = In 2—2 (11, 12].

[AlnZ| <1 Not worth more than a bare mention
1< |AlnZ| <25 Significant
25< |AlnZ|l <5 Strong to very strong
5< |AlnZ| Decisive

expression for the Bayesian evidence:

Z = P({d},} | M) (2)
:/P({dk},aM\M) dans (3)
:/P({dk}\aM,M) P(an|M) dany. (4)

(@) (@1)

Eq. (4) states that the Bayesian evidence is the integral of the product of two
distributions: (¢) the probability of the dataset {dy}, given the set of parameters
aps and the model M, and (i7) the probability of the set of parameters ay,
given the model M. The first factor, P({dy} |anr, M), can be identified as the
likelihood function, £(eps). Any prior knowledge of the parameters’ probability
distribution before considering the data {dj} is contained in the second factor
P(apg|M). This distribution, which is indispensable in Bayesian statistics, is
referred to as the prior distribution m(aps). These two substitutions allow us
to write the evidence in a more familiar form,

z- /E(aM)w(aM)daM, (5)

in which the explicit dependence on {d;} and M is omitted for brevity.

It is clear that the actual quantity of interest for model comparison is the
relative probability of a model M4 versus a model Mp, given the available ex-
perimental data {dy}. Writing down the probability ratios and subsequently
applying Bayes’ theorem, one can see how the evidence emerges from this ex-
pression:

P(Mal{dr}) _ P({d}|Ma) P(Ma) (6)
P(Mgp|{dy})  P({d}|Mp) P(Mp)

= % for P(M4) = P(Mpg). (7)
B

Any prior preference for one model over the other can be incorporated by

the factor IIZE%J‘S As we have no prior preference for one of the models, we

can take this value to be one, hence reducing the comparison of two models
to the calculation of the evidence ratio, which is often referred to as the Bayes



factor. The direct relation between Z and a model’s probability elucidates the
term “evidence”: if a model has a higher value of Z, there is more evidence
in favour of this model. In accordance with our intuitive notions, evidence is
not only based on experimental data, but also on theoretical restrictions that
are incorporated through the prior distribution. The natural logarithm of the
evidence ratio can be interpreted qualitatively with the aid of Jeffreys’ scale,
listed in Table 1.

The analytical form of the likelihood function £(aps) is rarely known and
a normal distribution is often used to approximate it. Indeed, data points are
independent and are usually reported to have normally distributed errors. This
gives rise to a y2-distribution for the quantity defined as

N 2
o) = S S]] ©
i i
where o; is the error bar of data point d;, and f;(cas) is the corresponding model
prediction. The y?-distribution can be approximated by a normal distribution
if the number of degrees of freedom k is sufficiently large. This value is defined
as k = N — dim(ays), which approximates the number of data points for a
sufficiently large dataset and low number of free parameters. The expression for
this limiting distribution is [13]:

1 O (am) — k)°
e exp — Jl\fk . 9)

In an analysis based on x? minimisation — which is an approximation to a
maximum likelihood fit — only the maximum value of £(aps) is considered for
model selection. A Bayesian approach is more comprehensive, as it evaluates
the model over its entire parameter space, and takes the prior distribution into
account. This distinction is illustrated in Fig. 1.

Determining the evidence of a model is not a straightforward task, because
it requires the calculation of multidimensional integrals of the type (5). Most
often, analytical simplifications are not possible and it is key to adopt numerical
integration techniques that are optimised for the problem at hand.

Nested Sampling (NS) is a novel integration technique for computing Bayesian
evidence, developed by Skilling [14, 15]. This technique significantly reduces the
computational cost of the integral over the model’s parameter space by trans-
forming it into a one-dimensional integral over the prior mass dX = n(ans)dans.
This is accomplished by regarding the prior mass as a monotonically decreasing
function of the likelihood, A:

X()) = /E(QMMW(OLM)daM. (10)

Assuming a normalised prior, we can hence write the evidence as the follow-
ing integral over £(X), the inverse of X (\),

Z= /113()() dx, (11)
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Figure 1: L(a) - m(a) for two different single-parameter models M4 and Mp. The traditional
least-squares method would favour Mg, as it only takes into account the maximum value of
the likelihood. In contrast, a Bayesian approach would favour model My, as its evidence,

given by Eq. (5), is greater.
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Figure 2: The Bayesian evidence Z as an integral of the likelihood £ over the prior mass X.
The lower plots illustrate that for a uniform prior, the increasing prior masses X (£;) are equal

indicate the order of integration.

to the area or mass { | L(ax) > £;} inside nested iso-likelihood contours. The thick arrows



as illustrated in Fig. 2. This integral can be approximated by a sum of likeli-
hoods, weighted with their respective prior mass contribution AX. In NS, this
sum is computed using Markov chain Monte Carlo methods to sample from the
parameter space with the constraint £;; > £;. The prior mass of a sample of
N points with likelihood greater than £; can be estimated by a factor exp f%.
This can be derived from the probability distribution of the largest value ty of
a set of N uniformly distributed points in the interval [0, 1] (representing the
total prior weight):

Py (t) = NtV 1, (12)

Indeed, the estimation value for (logt) \ is —%, which after ¢ iterations amounts
to a sum of f%.

Besides efficiently calculating the evidence, NS can also be used for determin-
ing the posterior distribution and, more importantly, for parameter estimation.
A more detailed account of the technique as well as implementation examples
can be found in Skilling’s work [15].

In the following section, we will present the results of an application of the
NS technique to a Regge model for K+ A and K+X° production.

3. Bayesian analysis of a Regge Model

Regge phenomenology is a powerful tool to economically describe reactions
at high energies [16]. A Regge model based on the exchange of charged me-
son Regge trajectories was applied to K'Y photoproduction by Vanderhaeghen,
Guidal and Laget [17]. They found the exchange of two t-channel trajecto-
ries sufficient to successfully describe the cross sections as well as polarisation
observables in photoproduction of kaons above the resonance region [18].

In the Regge-plus-resonance (RPR) description of electromagnetic K'Y pro-
duction, developed by Corthals et al., the Regge background is complemented
with s-channel nucleon (N*) resonances. This hybrid approach ensures a cor-
rect high-energy behaviour as well as an improved description of the resonance
region [4, 19, 20].

In the case of KT A and K*tX° photoproduction, the Regge background can
be modelled with the exchange of the KT (494) and K**(892) trajectories. This
amplitude is derived from the t-channel Feynman amplitude by replacing the
Feynman propagator by the respective Regge propagator [4]:

. s ak(t) 1
t)y=|— sin (o (1))
PrRegge(s:t) (So) sin(rak (t))

Tal 1
X~ —imax(t)



apx(t)—1
« 1
PKe+es,t:<S> - -
Regge (5 1) 50 sin (o (t)) (14)
T 1
X —imagex (t) :
F(O{K* (t)) € K=
The kaon trajectories are given by [4]:
ak(t) =0.70 GeV ™2 (t — m%) (15)
aj(t) =1+0.85 GeV 2 (t —m%.), (16)

and the scale factor s = 1 GeV ™2 The so-called sign factor in the Regge
propagator is reduced to a phase factor of either 1 (constant phase) or e ime(t)
(rotating phase) due to the strong degeneracy of the trajectories. This assump-
tion is inspired by the structureless high-energy differential cross-section. These
phases cannot be determined on theoretical grounds. The possibility of the
KT and K*T trajectories having a constant phase is excluded, as this combi-
nation gives rise to a photon asymmetry % = 0, which disagrees with the data.
The remaining three possibilities, namely rotating KT /rotating K*T, rotat-
ing Kt /constant K**, and constant K /rotating K**, will be abbreviated as
rot./rot., rot./cst. and cst./rot., respectively.

Apart from the three choices with regard to the phases, the model has three
continuous parameters. These are the strong coupling constant gx+y-, of the
K™ trajectory and the tensor and vector couplings of the K** trajectory,

v,t
€g
v,t K*+Yp
GK*+ = i REK+K*+ - (17)

Here, Ky + g++ is the transition magnetic moment for K*+ — vK+ decay.

In the following analysis, the Regge background will be constrained by the
high-energy data, in accordance with the RPR-approach. In this energy region,
there is a set of 72 data points for the KA channel, comprising 56 differential
cross section data points (42) [21], 9 photon asymmetries () [22] and 7 recoil
asymmetries (P) [23]. The database for K+%° photoproduction at high energies
is even smaller, with only 48 differential cross section data points [21] and 9
photon asymmetries () [22]. Optimisation of the above-mentioned parameters
against these data reveals that there are several model variants with comparable
x? values [4]. For example, in both KA and KX photoproduction, the signs
of G%., and G% .. cannot be established conclusively using the x2-method [4].

The sign and phase ambiguities may not seem important for the Regge model
itself. For the RPR model, however, an exact determination of the background
parameters is of major importance, because it affects the extraction of the res-
onance information.

Ref. [20] shows that by comparing the RPR model variants for electromag-
netic KA production to photo- and electroproduction data from the resonance



region, all but one Regge background model can be eliminated. We will show
that the Bayesian evidence can be used to distinguish among the twelve different
models that result from the possible sign and phase combinations, using only
the high-energy dataset.

4. Results

The prior m(a) is chosen to be a uniform distribution. Note that under con-
ditions of highly concentrated likelihood, for which the prior distribution varies
mildly, the likelihood dominates the shape of the posterior distribution [14].
Accordingly, the evidence calculations will not be largely affected by the choice
with regard to the prior distribution. This means that a uniform distribution
will lead to results that are similar to those obtained with a Gaussian or any
other well-behaved distribution. We show that the bulk of the likelihood is
indeed concentrated at parameter values below 100 by demonstrating that evi-
dence calculations for prior widths equal to 100 and much greater than 100 yield
the same results.

Prior information exists for the coupling constants of the KTYp vertices.
Indeed, the following relations follow from SU(3) symmetry [24]:

1
IK+ap = _%(3 = 200) gxN N (18)
JK+x0p = (2a — 1) grNN (19)

where « = F/(F + D) quantifies the ratio of F-type to D-type coupling and
gxNN is the pion-nucleon coupling constant. It is commonly assumed that SU(3)
symmetry can be broken at the 20% level [25]. Inserting the experimentally
determined values o = 0.644 and g2 /V4m = 14.3 yields the following prior
ranges for the coupling constants of the KTY%p vertices [24, 25]:

9K+Ap
a5 <IEA o3 20
<z = (20)
0.9 <IE % 3, (21)

Viar

There are no reliable theoretical constraints for the K**Y?p vertices [26].
We therefore choose a uniform distribution between zero and a value much larger
than the natural value of one. To justify this choice for the prior interval, a sen-
sitivity analysis of the evidence ratios is performed by repeating the calculations
for different prior ranges.

The results of these calculations for the KTA and K1tX° production models
are displayed in Table 2 and 3 respectively. These tables list the computed
values of Aln Z = In Z — In Z,,4;, using a prior width of respectively 100, 1000
and 10000. Changing the prior width from 100 to 1000 results in a difference
of less than 5% in the computed values. For a prior width of 10000, the error
increases significantly due to a reduced sampling efficiency. More importantly,



however, the ranking of the models is not significantly affected. Clearly, the
effect of the prior width on the relative probabilities of the models is negligible,
provided that it is large enough to contain the area where most of the likelihood
is concentrated.

Table 2: Logarithms of the evidence ratios (AlnZ = In(Z/Z4e)) for the twelve model
variants resulting from phase and sign ambiguities in the two-trajectory Regge model for
KA photoproduction. The results are listed in order of decreasing probability for a prior
width of 100.

G' G' KT/K*T phase « = U(0, £100) 7w = U(0, £1000) « = U(0, £10000)
+ — rot. / rot. 0 0 0

- - rot. / cst. —2430 + 0.75 —247 & 3.5 —24 £ 41
+ + rot. / rot. —77.23 + 0.76 —77.3 + 2.9 —79 + 59
- + rot. / cst. —387.04 £ 0.77 -387.7 * 4.2 —411 &+ 68
+ o+ rot. / cst. —2366.2 £+ 1.3 —2374 + 17 —2530 4+ 280
- - cst. / rot. —2870.66 + 0.73 —2871.0  + 4.0 —2890 + 81
- + cst. / rot. —3384.83 £ 0.83 —3386.7 =+ 7.6 —3440 £+ 120
+ — cst. / rot. —3475.74 £ 0.73 —3478.5 + 5.4 —3526 =+ 81
- - rot. / rot. —42979 £ 1.6 —4317 + 32 —4460 £ 200
- + rot. / rot. —4952.1 + 1.7 —4970 + 27 —5180 £+ 230
+ o+ cst. / rot. —5092.18 £ 0.72 —5004.2 =+ 7.8 —5150 £+ 130
+ — rot. / cst. —19602.3 + 4.2 —19710 + 200 —20430 4+ 440

Table 3: Logarithms of the evidence ratios (AlnZ = In(Z/Zpas)) for the twelve model
variants resulting from phase and sign ambiguities in the two-trajectory Regge model for
K50 photoproduction. The results are listed in order of decreasing probability for a prior
width of 100.

G° G' KT/K*T phase 7w = U(0, £100) 7w = U(0, £1000) 7w = U(0, £10000)
— — rot. / cst. 0 0 0

+ - rot. / cst. —0.50 4+ 042 | —0.42 + 0.63 | —0.55 £ 0.97
+ + cst. / rot. —0.67 4+ 040 | —0.63 + 0.63 | —0.53 £ 0.98
+ + rot. / rot. —-0.71 4+ 043 | —0.65 + 062 | —0.7 £ 1.1

- + rot. / rot. —-0.79 + 044 | —0.77 + 068 | —0.68 £+ 0.97
— - rot. / rot. -0.8 + 041 | —0.78 £ 0.67 | —0.73 + 0.87
+ — rot. / rot. —0.88 4+ 047 | —0.79 + 0.68 | —0.9 + 1.1

- + cst. / rot. —-1.01 + 044 | —1.03 + 0.62 | —1.1 + 1.1

+ - cst. / rot. —-1.22 £+ 045 | —1.10 + 068 | —1.2 + 1.1

— + rot. / cst. -1.23 + 046 | —1.11 + 072 | -1.09 £+ 0.98
- - cst. / rot. —-1.71 4+ 043 | —-1.65 + 0.65 | —1.71 £ 0.96
+ + rot. / cst. —-1.97 4+ 048 | —1.88 + 0.69 | —1.87 £ 0.99

Furthermore, the comparison with Jeffreys’ scale (Table 1) indicates that the
p(y, KT)A data exhibit decisive evidence for the model variant with a positive
vector and a negative tensor coupling constant, and a rotating phase for both
trajectories. Indeed, the difference in In Z with the second-best model is around
24, amply exceeding the value of 5 required for a decisive statement. This
result resolves the sign and phase ambiguity for KA photoproduction, which
previously could not be achieved using high-energy data alone [4]. Moreover,
the result from this Bayesian analysis is consistent with the previous analysis
of this particular model, but it did not require an additional analysis with data
from the resonance region (for which £}, < 3 GeV). In other words, the Nested
Sampling method requires less experimental data to reach the same conclusion
as the y2-analysis which used a much larger set of KA photoproduction data.
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Figure 3: Comparison of the log-likelihood of |G}, | for the two best models. The model
with the highest evidence is a rot./rot. (RR) model with a positive estimation value for this
parameter. The second-best model, rot./cst. (RC), has a negative estimation value.

Apart from the relative probability of the different models, the Nested Sam-
pling technique also provides us with an estimation value of the different pa-
rameters. In our best model, these values are:

IK+Ap
= —3.2240.04
Vi
Yy = 12.4740.14
Ghei = —32.19 £ 0.50. (22)

Additional calculations demonstrate that the results do not change signif-
icantly when the gg+yo, coupling constant is allowed to deviate up to 40%
from SU(3) predictions. For example, the values of Aln Z for the second and
third KA production models are —24.214-0.73 and —77.094-0.70 respectively,
agreeing with the values found for 20% SU(3) symmetry breaking. The esti-
mation values for the coupling constants are not affected. We conclude that
the high-energy p(7y, K1)A data support a coupling constant g+, compatible
with a level of SU(3) symmetry breaking of at most 20%. The estimation value
for gx+a, deviates 15% from the SU(3) prediction.

Fig. 3 shows the log-likelihood of the parameter GY..,, integrated over the
remaining two parameters, using a uniform prior between -100 and 100. The
likelihood is determined by the high-energy K ™A photoproduction data only.
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Figure 4: Comparison of the log-likelihood of |G§{*+| for the four best model variants. In
contrast with Fig. 3, the model with the highest evidence value does not have the highest peak.
Although the rot./cst. (RC) models surpass the cst./rot. (CR) and rot./rot. (RR) variants,
the difference between the evidences is still too small to make a decisive statement.

The greater width and height of the peak of the rot./rot. model variant indicate
that it should have a greater evidence than the alternative model.

The results for K1t3° production, listed in Table 3, are not as clear-cut
as those for p(y, KT)A. The difference in In Z of the model variants is next
to negligible. This was to be expected, as a smaller dataset provides fewer
restraints on the models’ parameters.

Even when the extensive set of resonance-region data is taken into account,
the experimental data from the proton target alone does not allow us to sin-
gle out one background model for the K*%° channel [20]. However, a recent
analysis of the corresponding reaction on the neutron, n(y, K™)X~, was able to
resolve the remaining ambiguity [27]. The models’ parameters were converted
from the proton to the neutron channel using isospin considerations.

The log-likelihood of the parameter G%.., for K 30 production is shown in
Fig. 4. Note that despite boasting the maximal likelihood value, the rot./rot
model has a lower evidence than the rot./cst. model.

5. Conclusions and outlook

Bayesian inference provides us with a promising tool for model comparison.
We have demonstrated this by using the Nested Sampling algorithm to compute
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the Bayesian evidence for different model variants of a Regge model for KY
photoproduction. The results of this calculation indicate that there is decisive
evidence for a KA production model with G%.. > 0, G% .. < 0, and a rotating
phase factor for both trajectories. This conclusion could not be drawn from the
high-energy data set by means of the method of x? minimisation.

For K*+X° production, the differences in evidence are too small to draw a
decisive conclusion, and supplementary data is required to fully determine the
background model for this channel.

The Nested Sampling method has many applications, both for the RPR
model and for other research. One of these applications is the accurate esti-
mation of model parameters as well as the elimination of nuisance parameters.
More importantly, however, this method may provide us with a means to ad-
dress the missing-resonance problem by calculating the probability of individual
resonance contributions in a Bayesian framework. This is an approach we intend
to explore in the near future.
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