14,778 research outputs found

    High energy density electrochemical cell

    Get PDF
    Primary cell has an anode of lithium, a cathode containing dihaloisocyanuric acid, and a nonaqueous electrolyte comprised of a solution of lithium perchlorate in methyl formate. It produces an energy density of 213 watt hrs/lb and can achieve a high current density

    U.S. CHAIN RESTAURANT EFFICIENCY

    Get PDF
    The growth of corporate food service firms and the resulting competition places increasing pressures on available resources and their efficient usage. This analysis measures efficiencies for U. S. chain restaurants and determines associations between managerial and operational characteristics. Using a ray-homothetic production function, frontiers were estimated for large and small restaurant chains. Technical and scale efficiencies were then derived for the firms. Finally, a Tobit analysis measured associations between technical efficiencies and firm characteristics. Results showed differences based on firm size, but factors such as experience, service format, unit size, and menu were strongly associated with efficiency, perhaps offsetting some firm size effects.Agribusiness,

    Improving technology transfer through national systems of innovation: climate relevant innovation-system builders (CRIBs)

    Get PDF
    The Technology Executive Committee (TEC) of the United Nations Framework Convention on Climate Change (UNFCCC) recently convened a workshop seeking to understand how strengthening national systems of innovation (NSIs) might help to foster the transfer of climate technologies to developing countries. This article reviews insights from the literatures on Innovation Studies and Socio-Technical Transitions to demonstrate why this focus on fostering innovation systems has potential to be more transformative as an international policy mechanism for climate technology transfer than anything the UNFCCC has considered to date. Based on insights from empirical research, the article also articulates how the existing architecture of the UNFCCC Technology Mechanism could be usefully extended by supporting the establishment of CRIBs (climate relevant innovation-system builders) in developing countries – key institutions focused on nurturing the climate-relevant innovation systems and building technological capabilities that form the bedrock of transformative, climate-compatible technological change and development

    Development of the dry tape battery concept Quarterly report no. 3, 9 Dec. 1965 - 8 Mar. 1966

    Get PDF
    Material electrical and chemical properties tested for use in dry tape batterie

    A hydrological analysis of East Australian floods using Nimbus 5 electrically scanning microwave radiometer data

    Get PDF
    A chronology of a major Australian flood in 1974 is presented using Nimbus 5 Passive Microwave Data (ESMR) and other conventional and satellite supporting data

    Research and development of the dry tape battery concept Quarterly report no. 2, 9 Sep. - 8 Dec. 1965

    Get PDF
    Magnesium-aluminum chloride, hydrogen chloride- trichlorotriazinetrione system for dry tape batterie

    A note on heat and mass transfer from a sphere in Stokes\ud flow at low Péclet number

    Get PDF
    We consider the low Péclet number, Pe ≪ 1, asymptotic solution for steady-state heat and mass transfer from a sphere immersed in Stokes flow with a Robin boundary condition on its surface, representing Newton cooling or a first-order chemical reaction. The application of van Dyke’s rule up to terms of O(Pe3) shows that the O(Pe3 log Pe) terms in the expression for the average Nusselt/Sherwood number are double those previously derived in the literature. Inclusion of the O(Pe3) terms is shown to increase significantly the range of validity of the expansion

    Wound healing angiogenesis the clinical implications of a simple mathematical model

    Get PDF
    Nonhealing wounds are a major burden for health care systems worldwide. In addition, a patient who suffers from this type of wound usually has a reduced quality of life. While the wound healing process is undoubtedly complex, in this paper we develop a deterministic mathematical model, formulated as a system of partial differential equations, that focusses on an important aspect of successful healing: oxygen supply to the wound bed by a combination of diffusion from the surrounding unwounded tissue and delivery from newly-formed blood vessels. While the model equations can be solved numerically, the emphasis here is on the use of asymptotic methods to establish conditions under which new blood vessel growth can be initiated and wound-bed angiogenesis can progress. These conditions are given in terms of key model parameters including the rate of oxygen supply and its rate of consumption in the wound. We use our model to discuss the clinical use of treatments such as hyperbaric oxygen therapy, wound bed debridement, and revascularisation therapy that have the potential to initiate healing in chronic, stalled wounds

    The interplay between tissue growth and scaffold degradation in engineered tissue constructs

    Get PDF
    In vitro tissue engineering is emerging as a potential tool to meet the high demand for replacement tissue, caused by the increased incidence of tissue degeneration and damage. A key challenge in this field is ensuring that the mechanical properties of the engineered tissue are appropriate for the in vivo environment. Achieving this goal will require detailed understanding of the interplay between cell proliferation, extracellular matrix (ECM) deposition and scaffold degradation.\ud \ud In this paper, we use a mathematical model (based upon a multiphase continuum framework) to investigate the interplay between tissue growth and scaffold degradation during tissue construct evolution in vitro. Our model accommodates a cell population and culture medium, modelled as viscous fluids, together with a porous scaffold and ECM deposited by the cells, represented as rigid porous materials. We focus on tissue growth within a perfusion bioreactor system, and investigate how the predicted tissue composition is altered under the influence of (i) differential interactions between cells and the supporting scaffold and their associated ECM, (ii) scaffold degradation, and (iii) mechanotransduction-regulated cell proliferation and ECM deposition.\ud \ud Numerical simulation of the model equations reveals that scaffold heterogeneity typical of that obtained from μCT scans of tissue engineering scaffolds can lead to significant variation in the flow-induced mechanical stimuli experienced by cells seeded in the scaffold. This leads to strong heterogeneity in the deposition of ECM. Furthermore, preferential adherence of cells to the ECM in favour of the artificial scaffold appears to have no significant influence on the eventual construct composition; adherence of cells to these supporting structures does, however, lead to cell and ECM distributions which mimic and exaggerate the heterogeneity of the underlying scaffold. Such phenomena have important ramifications for the mechanical integrity of engineered tissue constructs and their suitability for implantation in vivo
    • …
    corecore