5,252 research outputs found

    Long time, large scale limit of the Wigner transform for a system of linear oscillators in one dimension

    Get PDF
    We consider the long time, large scale behavior of the Wigner transform W_\eps(t,x,k) of the wave function corresponding to a discrete wave equation on a 1-d integer lattice, with a weak multiplicative noise. This model has been introduced in Basile, Bernardin, and Olla to describe a system of interacting linear oscillators with a weak noise that conserves locally the kinetic energy and the momentum. The kinetic limit for the Wigner transform has been shown in Basile, Olla, and Spohn. In the present paper we prove that in the unpinned case there exists γ0>0\gamma_0>0 such that for any γ∈(0,γ0]\gamma\in(0,\gamma_0] the weak limit of W_\eps(t/\eps^{3/2\gamma},x/\eps^{\gamma},k), as \eps\ll1, satisfies a one dimensional fractional heat equation ∂tW(t,x)=−c^(−∂x2)3/4W(t,x)\partial_t W(t,x)=-\hat c(-\partial_x^2)^{3/4}W(t,x) with c^>0\hat c>0. In the pinned case an analogous result can be claimed for W_\eps(t/\eps^{2\gamma},x/\eps^{\gamma},k) but the limit satisfies then the usual heat equation

    Projected precipitation changes within the Great Lakes and Western Lake Erie Basin: a multi‐model analysis of intensity and seasonality

    Full text link
    The Great Lakes region encompasses the largest freshwater lake network in the world and supports a diverse network of agriculture, transportation, and tourism. Recently, Lake Erie has experienced increased hypoxia events, which have been attributed to agricultural practices and changes in run‐off. Here we examine the projected changes in extreme precipitation events to address concerns regarding regional agriculture, surface run‐off, and subsequent water quality. Precipitation projections within the overall Great Lakes Basin and the Western Lake Erie Basin subregion are examined using climate model simulations of varying spatial resolutions to understand historical precipitation and projected future precipitation. We develop three model ensembles for the historical period (1980–1999) and the mid‐century (2041–2060) that cover a range of spatial resolutions and future emissions scenarios, including: (1) 12 global model members from the fifth Climate Model Intercomparison Project (CMIP5) using Representative Concentration Pathway (RCP) 8.5, (2) ten regional climate model (RCM) members from the North American Regional Climate Change Assessment Program driven by CMIP3 global models using the A2 emissions scenario, and (3) two high resolution RCM simulations (RCM4) driven by CMIP5 global models using the RCP 8.5 scenario. For the historical period, all model ensembles overestimate winter and spring precipitation, and many of the models simulate a summer drying that is not observed. At mid‐century, most of the models predict a 10–20% increase in precipitation depending on the time of year. Daily probability distribution functions from three model ensembles reveal spring seasonal increases in high precipitation event probabilities when compared to the historical period, suggesting an increase in the frequency of high intensity precipitation at mid‐century. Overall, the presence of lakes or higher spatial resolution does not ensure improved representation of historical processes, and more complex interactions between large‐scale dynamics, local feedbacks, and physical parameterizations drive the model spread.We examine extreme precipitation events in the Great Lakes and the Western Lake Erie Basin using global and regional climate model simulations of to understand historical precipitation and projected future mid‐century precipitation. At mid‐century, most models predict a 10–20% precipitation increase and an increase in the frequency of high intensity precipitation at mid‐century. The presence of lakes or higher spatial resolution does not ensure improved representation of precipitation and large‐scale dynamics, local feedbacks, and physical parameterizations drive the model spread.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/139100/1/joc5128.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139100/2/joc5128_am.pd

    Thermal conductivity in harmonic lattices with random collisions

    Get PDF
    We review recent rigorous mathematical results about the macroscopic behaviour of harmonic chains with the dynamics perturbed by a random exchange of velocities between nearest neighbor particles. The random exchange models the effects of nonlinearities of anharmonic chains and the resulting dynamics have similar macroscopic behaviour. In particular there is a superdiffusion of energy for unpinned acoustic chains. The corresponding evolution of the temperature profile is governed by a fractional heat equation. In non-acoustic chains we have normal diffusivity, even if momentum is conserved.Comment: Review paper, to appear in the Springer Lecture Notes in Physics volume "Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer" (S. Lepri ed.

    Bell inequalities for three systems and arbitrarily many measurement outcomes

    Full text link
    We present a family of Bell inequalities for three parties and arbitrarily many outcomes, which can be seen as a natural generalization of the Mermin Bell inequality. For a small number of outcomes, we verify that our inequalities define facets of the polytope of local correlations. We investigate the quantum violations of these inequalities, in particular with respect to the Hilbert space dimension. We provide strong evidence that the maximal quantum violation can only be reached using systems with local Hilbert space dimension exceeding the number of measurement outcomes. This suggests that our inequalities can be used as multipartite dimension witnesses.Comment: v1 6 pages, 4 tables; v2 Published version with minor typos correcte

    Energy transfer in a fast-slow Hamiltonian system

    Get PDF
    We consider a finite region of a lattice of weakly interacting geodesic flows on manifolds of negative curvature and we show that, when rescaling the interactions and the time appropriately, the energies of the flows evolve according to a non linear diffusion equation. This is a first step toward the derivation of macroscopic equations from a Hamiltonian microscopic dynamics in the case of weakly coupled systems

    Ghigliottin-AI @ EVALITA2020: Evaluating artificial players for the language game “La Ghigliottina”

    Get PDF
    Evaluating Artificial Players for the Language Game “La Ghigliottina” (Ghigliottin-AI) task is one of the tasks organized in the context of the 2020 EVALITA edition, a periodic evaluation campaign of Natural Language Processing (NLP) and speech tools for the Italian language. Ghigliottin-AI participants are asked to build an artificial player able to solve “La Ghigliottina”, namely the final game of an Italian TV show called “L'Eredità”. The game involves a single player who is given a set of five words unrelated to each other, but related with a sixth word that represents the solution to the game. Fourteen teams registered to Ghigliottin-AI. Nevertheless, only two teams submitted their run. In order to evaluate the submitted systems, we rely on an API base methodology, via a Remote Evaluation Server (RES). In this report we describe the Ghigliottin-AI task, the data, the evaluation and we discuss results

    Studies of multiplicity in relativistic heavy-ion collisions

    Full text link
    In this talk I'll review the present status of charged particle multiplicity measurements from heavy-ion collisions. The characteristic features of multiplicity distributions obtained in Au+Au collisions will be discussed in terms of collision centrality and energy and compared to those of p+p collisions. Multiplicity measurements of d+Au collisions at 200 GeV nucleon-nucleon center-of-mass energy will also be discussed. The results will be compared to various theoretical models and simple scaling properties of the data will be identified.Comment: "Focus on Multiplicity" Internationsl Workshop on Particle Multiplicity in Relativistic Heavy Ion Collisions, Bari, Italy, June 17-19, 2003, 16 pages, 15 figure

    Non equilibrium current fluctuations in stochastic lattice gases

    Full text link
    We study current fluctuations in lattice gases in the macroscopic limit extending the dynamic approach for density fluctuations developed in previous articles. More precisely, we establish a large deviation principle for a space-time fluctuation jj of the empirical current with a rate functional \mc I (j). We then estimate the probability of a fluctuation of the average current over a large time interval; this probability can be obtained by solving a variational problem for the functional \mc I . We discuss several possible scenarios, interpreted as dynamical phase transitions, for this variational problem. They actually occur in specific models. We finally discuss the time reversal properties of \mc I and derive a fluctuation relationship akin to the Gallavotti-Cohen theorem for the entropy production.Comment: 36 Pages, No figur

    Random matrix analysis of the QCD sign problem for general topology

    Full text link
    Motivated by the important role played by the phase of the fermion determinant in the investigation of the sign problem in lattice QCD at nonzero baryon density, we derive an analytical formula for the average phase factor of the fermion determinant for general topology in the microscopic limit of chiral random matrix theory at nonzero chemical potential, for both the quenched and the unquenched case. The formula is a nontrivial extension of the expression for zero topology derived earlier by Splittorff and Verbaarschot. Our analytical predictions are verified by detailed numerical random matrix simulations of the quenched theory.Comment: 33 pages, 9 figures; v2: minor corrections, references added, figures with increased statistics, as published in JHE

    Serum-stable, long-circulating paclitaxel-loaded colloidal carriers decorated with a new amphiphilic PEG derivative

    Get PDF
    The paper describes sterically stabilized lipid nanocapsules (LNC) and multilamellar liposomes (MLV) coated using a new amphiphilic conjugate of PEG2000 with a 2-alkyl-lipoamino acid (LAA). A complement activation assay (CH50) and uptake experiments by THP-1 macrophage cells were used to assess in vitro the effectiveness of the PEG-LAA derivative of modifying the surface behavior of nanocarriers. Administered to rats or Swiss mice, respectively, the PEG2000-LAA—modified LNC and MLV showed plasma half-lives longer than the corresponding naked carriers. To assess the ability of nanocarriers to specifically reach tumor sites, paclitaxel (PTX)—loaded LNC and MLV were administered subcutaneously to rats implanted with a 9L glioma. Animals treated with saline or naked LNC and MLV underwent a quick expansion of tumor mass, up to a volume of 2000 mm3 25 days after the injection of tumor cells. On the contrary, treatment with a PEG-LAA modified LNC carrier reduced the growth of the tumor volume, which did not exceed 1000 mm3 by day 25. Analogous positive results were obtained with the liposomal systems. The experimental findings confirmed that these new PEG-LAA conjugates allow to obtain sterically stable nanocarriers that behave effectively and in a comparable or even better way than the (phospho)lipid PEG derivatives commercially available
    • 

    corecore