7 research outputs found
A Laboratory of Extremophiles: Iceland Coordination Action for Research Activities on Life in Extreme Environments (CAREX) Field Campaign
Existence of life in extreme environments has been known for a long time, and their habitants have been investigated by different scientific disciplines for decades. However, reports of multidisciplinary research are uncommon. In this paper, we report an interdisciplinary three-day field campaign conducted in the framework of the Coordination Action for Research Activities on Life in Extreme Environments (CAREX) FP7EU program, with participation of experts in the fields of life and earth sciences. In situ experiments and sampling were performed in a 20 m long hot springs system of different temperature (57 \ub0C to 100 \ub0C) and pH (2 to 4). Abiotic factors were measured to study their influence on the diversity. The CO2 and H2S concentration varied at different sampling locations in the system, but the SO2 remained the same. Four biofilms, mainly composed by four different algae and phototrophic protists, showed differences in photosynthetic activity. Varying temperature of the sampling location affects chlorophyll fluorescence, not only in the microbial mats, but plants (Juncus), indicating selective adaptation to the environmental conditions. Quantitative polymerase chain reaction (PCR), DNA microarray and denaturing gradient gel electrophoresis (DGGE)-based analysis in laboratory showed the presence of a diverse microbial population. Even a short duration (30 h) deployment of a micro colonizer in this hot spring system led to colonization of microorganisms based on ribosomal intergenic spacer (RISA) analysis. Polyphasic analysis of this hot spring system was possible due to the involvement of multidisciplinary approaches
Internal structure and photosynthetic performance of Nostoc sp. colonies in the high Arctic
The physiological performance of Nostoc sp. colonies in the high Arctic was investigated based on their structure and function. To investigate the internal colony structure, a method based on vertical stacking of individual light microscopy images was tested under the conditions at a polar field station. The physiological state of sun-exposed and shaded surfaces of the colonies was assessed using variable chlorophyll fluorescence imaging under two distinct low- and high-light conditions. The 3D image of the internal structure of the colonies revealed a high number of cells in the central part of the colony. Two peaks of maximum cell density were observed, probably caused by two overlapping colony lobes or subcolonies. Light was the driving factor of photosynthetic activity, and the colony structure played a role in the rate of response to incoming light. Fluorescence imaging revealed heterogeneity of the photosynthetic activity in the colonies, with the maximum photosynthetic activity at the colony edge due to better access to nutrients. The differences between exposed and shaded surfaces were not as pronounced as was expected, either due to good photoacclimation to a broad range of light conditions, light distribution through translucent extracellular matrixes, or integration of fluorescence signals throughout the colonies. The slightly better photosynthetic performance under high light conditions may indicate photoacclimation of Nostoc sp. to a broad range of light conditions encountered in the field
Multidisciplinary integrated field campaign to an acidic Martian Earth analogue with astrobiological interest: Rio Tinto
Recently reported results from latest Mars Orbiters and Rovers missions are transforming our opinion about the red planet. That dry and inhospitable planet reported in the past is becoming a wetter planet with high probabilities of water existence in the past. Nowadays, some results seem to indicate the presence of water beneath the Mars surface. But also mineralogy studies by NASA Opportunity Rover report iron oxides and hydroxides precipitates on Endurance Crater. Sedimentary deposits have been identified at Meridiani Planum. These deposits must have generated in a dune aqueous acidic and oxidizing environment. Similarities appear when we study Rio Tinto, and acidic river under the control of iron. The discovery of extremophiles on Earth widened the window of possibilities for life to develop in the Universe, and as a consequence on Mars and other planetary bodies with astrobiological interest. The compilation of data produced by the ongoing missions offers an interested view for life possibilities to exist: signs of an early wet Mars and rather recent volcanic activity as well as ground morphological characteristics that seem to be promoted by liquid water. The discovery of important accumulations of sulfates and the existence of iron minerals such as jarosite in rocks of sedimentary origin has allowed specific terrestrial models to come into focus. Río Tinto (Southwestern Spain, Iberian Pyritic Belt) is an extreme acidic environment, product of the chemolithotrophic activity of micro-organisms that thrive in the massive pyrite-rich deposits of the Iberian Pyritic Belt. Some particular protective environments should house the organic molecules and bacterial life forms in harsh environments such as Mars surface supporting microniches inside precipitated minerals or inside rocks. Terrestrial analogues could help us to afford the comprehension of habitability (on other planetary bodies). We are reporting here the multidisciplinary study of some endolithic niches inside salt deposits used by phototrophs for taking advantage of sheltering particular light wavelengths. These acidic salts deposits located in Río Tinto shelter life forms that are difficult to visualize by eye. This interdisciplinary field analogue campaign was conducted in the framework of the CAREX FP7 EC programme. © 2011 Cambridge University Press
Multidisciplinary integrated field campaign to an acidic Martian Earth analogue with astrobiological interest: Rio Tinto
Recently reported results from latest Mars Orbiters and Rovers missions are transforming our opinion about the red planet. That dry and inhospitable planet reported in the past is becoming a wetter planet with high probabilities of water existence in the past. Nowadays, some results seem to indicate the presence of water beneath the Mars surface. But also mineralogy studies by NASA Opportunity Rover report iron oxides and hydroxides precipitates on Endurance Crater. Sedimentary deposits have been identified at Meridiani Planum. These deposits must have generated in a dune aqueous acidic and oxidizing environment. Similarities appear when we study Rio Tinto, and acidic river under the control of iron. The discovery of extremophiles on Earth widened the window of possibilities for life to develop in the Universe, and as a consequence on Mars and other planetary bodies with astrobiological interest. The compilation of data produced by the ongoing missions offers an interested view for life possibilities to exist: signs of an early wet Mars and rather recent volcanic activity as well as ground morphological characteristics that seem to be promoted by liquid water. The discovery of important accumulations of sulfates and the existence of iron minerals such as jarosite in rocks of sedimentary origin has allowed specific terrestrial models to come into focus. Río Tinto (Southwestern Spain, Iberian Pyritic Belt) is an extreme acidic environment, product of the chemolithotrophic activity of micro-organisms that thrive in the massive pyrite-rich deposits of the Iberian Pyritic Belt. Some particular protective environments should house the organic molecules and bacterial life forms in harsh environments such as Mars surface supporting microniches inside precipitated minerals or inside rocks. Terrestrial analogues could help us to afford the comprehension of habitability (on other planetary bodies). We are reporting here the multidisciplinary study of some endolithic niches inside salt deposits used by phototrophs for taking advantage of sheltering particular light wavelengths. These acidic salts deposits located in Río Tinto shelter life forms that are difficult to visualize by eye. This interdisciplinary field analogue campaign was conducted in the framework of the CAREX FP7 EC programme.Remote SensingAerospace Engineerin