127 research outputs found

    The Spectral Energy Distributions of Red 2MASS AGN

    Full text link
    We present infrared (IR) to X-ray spectral energy distributions (SEDs) for 44 red AGN selected from the 2MASS survey on the basis of their red J-KS_S color (>2 mag) and later observed by Chandra. In comparison with optically-, radio-, and X-ray selected AGN, their median SEDs are red in the optical and near-IR with little/no blue bump. It thus seems that near-IR color selection isolates the reddest subset of AGN that can be classified optically. The shape of the SEDs is generally consistent with modest absorption by gas (in the X-ray) and dust (in the optical-IR). The levels of obscuration, estimated from X-rays, far-IR and our detailed optical/near-IR color modeling are all consistent implying N_H < few*10^{22} cm^{-2}. We present SED models that show how the AGN optical/near-IR colors change due to differing amounts of reddening, AGN to host galaxy ratio, redshift and scattered light emission and apply them to the sources in the sample. We find that the 2MASS AGN optical color, B-R, and to a lesser extent the near-IR color, J-KS_S, are strongly affected by reddening, host galaxy emission, redshift, and in few, highly polarized objects, also by scattered AGN light. The obscuration/inclination of the AGN allows us to see weaker emission components which are generally swamped by the AGN.Comment: 52 pages, 17 figures, accepted for publication in Ap

    Black hole masses from power density spectra: determinations and consequences

    Get PDF
    We analyze the scaling of the X-ray power density spectra with the mass of the black hole on the example of Cyg X-1 and Seyfert 1 galaxy NGC 5548. We show that the high frequency tail of the power density spectrum can be successfully used for determination of the black hole mass. We determine the masses of the black holes in 6 Broad Line Seyfert 1 galaxies, 5 Narrow Line Seyfert 1 galaxies and two QSOs using available power density spectra. The proposed scaling is clearly appropriate for other Seyfert galaxies and QSOs. In all but 1 normal Seyferts the resulting luminosity to the Eddington luminosity ratio is smaller than 0.15, with a source MCG -6-15-30 being an exception. The applicability of the same scaling to Narrow Line Seyfert 1 is less clear and there may be a systematic shift between the power spectra of NLS1 and S1 galaxies of the same mass, leading to underestimation of the black hole mass. However, both the method based on variability and the method based on spectral fitting show that those galaxies have relatively low masses and high luminosity to the Eddington luminosity ratio, supporting the view of those objects as analogs of galactic sources in their high/soft or very high state based on the overall spectral shape. Bulge masses of their host galaxies are similar to normal Seyfert galaxies so they do not follow the black hole mass-bulge mass relation for Seyfert galaxies, being evolutionary less advanced, as suggested by Mathur (2000). The bulge mass-black hole mass relation in our sample is consistent with being linear, with black hole to bulge ratio \sim 0.03 %, similar to Wandel (1999) and Laor (1998, 2001) for low mass objects but significantly shifted from the relation of Magorrian et al. (1998) and McLure & Dunlop (2000).Comment: 11 pages, 7 figures, 1 table, accepted for publication in MNRA

    Quasar Evolution and the Baldwin Effect in the Large Bright Quasar Survey

    Full text link
    From a large homogeneous sample of optical/UV emission line measurements for 993 quasars from the Large Bright Quasar Survey (LBQS), we study correlations between emission line equivalent width and both restframe ultraviolet luminosity (i.e., the Baldwin Effect) and redshift. Our semi-automated spectral fitting accounts for absorption lines, fits blended iron emission, and provides upper limits to weak emission lines. Use of a single large, well-defined sample and consistent emission line measurements allows us to sensitively detect many correlations, most of which have been previously noted. A new finding is a significant Baldwin Effect in UV iron emission. Further analysis reveals that the primary correlation of iron emission strength is probably with redshift, implying an evolutionary rather than a luminosity effect. We show that for most emission lines with a significant Baldwin Effect, and for some without, evolution dominates over luminosity effects. This may reflect evolution in abundances, in cloud covering factors, or overall cloud conditions such as density and ionization. We find that in our sample, a putative correlation between Baldwin Effect slope and the ionization potential is not significant. Uniform measurements of other large quasar samples will extend the luminosity and redshift range of such spectral studies and provide even stronger tests of spectral evolution.Comment: 16 pages, Latex, emulateapj style, including 3 tables and 6 figures. Accepted April 02, 2001 for publication in ApJ Main Journal. See also http://hea-www.harvard.edu/~pgreen/Papers.htm

    PCA of the spectral energy distribution and emission line properties of red 2MASS AGN

    Full text link
    We analyze the spectral energy distributions (SEDs) and emission line properties of the red (J-KS_S > 2) 2MASS AGN observed by Chandra using principle component analysis. The sample includes 44 low redshift AGN with low or moderate obscuration (N_H < 10^{23} cm^{-2}) as indicated by X-rays and SED modeling. The obscuration of the AGN allows us to see weaker emission components (host galaxy emission, AGN scattered light) which are usually outshone by the AGN. The first four eigenvectors explain 70% of the variance in the sample. The dominant cause of variance in the sample (eigenvector 1) is the L/Ledd ratio strengthened by intrinsic absorption. Eigenvector 2 is related to host galaxy (relative to the observed AGN) emission and eigenvectors 3 and 4 distinguish between two sources of obscuration: host galaxy absorption and circumnuclear absorption. Although our analysis is consistent with unification schemes where inclination dependent obscuration is important in determining the AGN SEDs, the L/Ledd ratio is the most important factor, followed by host galaxy emission.Comment: 16 pages, 9 figures, accepted for publication in Ap

    Strongly Variable z=1.48 FeII and MgII Absorption in the Spectra of z=4.05 GRB 060206

    Full text link
    We report on the discovery of strongly variable FeII and MgII absorption lines seen at z=1.48 in the spectra of the z=4.05 GRB 060206 obtained between 4.13 to 7.63 hours (observer frame) after the burst. In particular, the FeII line equivalent width (EW) decayed rapidly from 1.72+-0.25 AA to 0.28+-0.21 AA, only to increase to 0.96+-0.21 AA in a later date spectrum. The MgII doublet shows even more complicated evolution: the weaker line of the doublet drops from 2.05+-0.25 AA to 0.92+-0.32 AA, but then more than doubles to 2.47+-0.41 AA in later data. The ratio of the EWs for the MgII doublet is also variable, being closer to 1:1 (saturated regime) when the lines are stronger and becoming closer to 2:1 (unsaturated regime) when the lines are weaker, consistent with expectations based on atomic physics. We have investigated and rejected the possibility of any instrumental or atmospheric effects causing the observed strong variations. Our discovery of clearly variable intervening FeII and MgII lines lends very strong support to their scenario, in which the characteristic size of intervening patches of MgII ``clouds'' is comparable to the GRB beam size, i.e, about 10^16 cm. We discuss various implications of this discovery, including the nature of the MgII absorbers, the physics of GRBs, and measurements of chemical abundances from GRB and quasar absorption lines.Comment: 14 pages, 3 figures, 1 table; ApJ Letters, accepte

    Infrared Properties of High Redshift and X-ray Selected AGN Samples

    Full text link
    The NASA/ISO Key Project on active galactic nuclei (AGN) seeks to better understand the broad-band spectral energy distributions (SEDs) of these sources from radio to X-rays, with particular emphasis on infrared properties. The ISO sample includes a wide variety of AGN types and spans a large redshift range. Two subsamples are considered herein: 8 high-redshift (1 < z < 4.7) quasars; and 22 hard X-ray selected sources. The X-ray selected AGN show a wide range of IR continuum shapes, extending to cooler colors than the optical/radio sample of Elvis et al. (1994). Where a far-IR turnover is clearly observed, the slopes are < 2.5 in all but one case so that non-thermal emission remains a possibility. The highest redshift quasars show extremely strong, hot IR continua requiring ~ 100 solar masses of 500 - 1000 Kelvin dust with ~ 100 times weaker optical emission. Possible explanations for these unusual properties include: reflection of the optical light from material above/below a torus; strong obscuration of the optical continuum; or an intrinsic deficit of optical emission.Comment: 8 pages, 3 figures (2 color), to be published in the Springer Lecture Notes of Physics Series as part of the proceedings for "ISO Surveys of a Dusty Universe," a workshop held at Ringberg Castle, Germany, November 8 - 12, 1999. Requires latex style files for this series: cl2emult.cls, cropmark.sty, lnp.sty, sprmindx.sty, subeqnar.sty (included with submission
    corecore