296 research outputs found
Vacuum energy: quantum hydrodynamics vs quantum gravity
We compare quantum hydrodynamics and quantum gravity. They share many common
features. In particular, both have quadratic divergences, and both lead to the
problem of the vacuum energy, which in the quantum gravity transforms to the
cosmological constant problem. We show that in quantum liquids the vacuum
energy density is not determined by the quantum zero-point energy of the phonon
modes. The energy density of the vacuum is much smaller and is determined by
the classical macroscopic parameters of the liquid including the radius of the
liquid droplet. In the same manner the cosmological constant is not determined
by the zero-point energy of quantum fields. It is much smaller and is
determined by the classical macroscopic parameters of the Universe dynamics:
the Hubble radius, the Newton constant and the energy density of matter. The
same may hold for the Higgs mass problem: the quadratically divergent quantum
correction to the Higgs potential mass term is also cancelled by the
microscopic (trans-Planckian) degrees of freedom due to thermodynamic stability
of the whole quantum vacuum.Comment: 14 pages, no figures, added section on the problem of Higgs mass,
version accepted for the special issue of JETP Letter
Observation of Apparently Zero-Conductance States in Corbino Samples
Using Corbino samples we have observed oscillatory conductance in a
high-mobility two-dimensional electron system subjected to crossed microwave
and magnetic fields. On the strongest of the oscillation minima the conductance
is found to be vanishingly small, possibly indicating an insulating state
associated with these minima.Comment: 4 pages, 3 figures, RevTex
A System for Information Management in BioMedical Studies—SIMBioMS
Summary: SIMBioMS is a web-based open source software system for managing data and information in biomedical studies. It provides a solution for the collection, storage, management and retrieval of information about research subjects and biomedical samples, as well as experimental data obtained using a range of high-throughput technologies, including gene expression, genotyping, proteomics and metabonomics. The system can easily be customized and has proven to be successful in several large-scale multi-site collaborative projects. It is compatible with emerging functional genomics data standards and provides data import and export in accepted standard formats. Protocols for transferring data to durable archives at the European Bioinformatics Institute have been implemented
Stop Making Sense(s) : Some late medieval and very late medieval views on faculty psychology
Peer reviewe
Nonlinear effects in microwave photoconductivity of two-dimensional electron systems
We present a model for microwave photoconductivity of two-dimensional
electron systems in a magnetic field which describes the effects of strong
microwave and steady-state electric fields. Using this model, we derive an
analytical formula for the photoconductivity associated with photon- and
multi-photon-assisted impurity scattering as a function of the frequency and
power of microwave radiation. According to the developed model, the microwave
conductivity is an oscillatory function of the frequency of microwave radiation
and the cyclotron frequency which turns zero at the cyclotron resonance and its
harmonics. It exhibits maxima and minima (with absolute negative conductivity)
at the microwave frequencies somewhat different from the resonant frequencies.
The calculated power dependence of the amplitude of the microwave
photoconductivity oscillations exhibits pronounced sublinear behavior similar
to a logarithmic function. The height of the microwave photoconductivity maxima
and the depth of its minima are nonmonotonic functions of the electric field.
It is pointed to the possibility of a strong widening of the maxima and minima
due to a strong sensitivity of their parameters on the electric field and the
presence of strong long-range electric-field fluctuations. The obtained
dependences are consistent with the results of the experimental observations.Comment: 9 pages, 6 figures Labeling of the curves in Fig.3 correcte
Accurate Identification of Closely Related Mycobacterium tuberculosis Complex Species by High Resolution Tandem Mass Spectrometry
Rapid and accurate differentiation of Mycobacterium tuberculosis complex (MTBC) species from other mycobacterium is essential for appropriate therapeutic management, timely intervention for infection control and initiation of appropriate health care measures. However, routine clinical characterization methods for Mycobacterium tuberculosis (Mtb) species remain both, time consuming and labor intensive. In the present study, an innovative liquid Chromatography-Mass Spectrometry method for the identification of clinically most relevant Mycobacterium tuberculosis complex species is tested using a model set of mycobacterium strains. The methodology is based on protein profiling of Mycobacterium tuberculosis complex isolates, which are used as markers of differentiation. To test the resolving power, speed, and accuracy of the method, four ATCC type strains and 37 recent clinical isolates of closely related species were analyzed using this new approach. Using different deconvolution algorithms, we detected hundreds of individual protein masses, with a subpopulation of these functioning as species-specific markers. This assay identified 216, 260, 222, and 201 proteoforms for M. tuberculosis ATCC 27294™, M. microti ATCC 19422™, M. africanum ATCC 25420™, and M. bovis ATCC 19210™ respectively. All clinical strains were identified to the correct species with a mean of 95% accuracy. Our study successfully demonstrates applicability of this novel mass spectrometric approach to identify clinically relevant Mycobacterium tuberculosis complex species that are very closely related and difficult to differentiate with currently existing methods. Here, we present the first proof-of-principle study employing a fast mass spectrometry-based method to identify the clinically most prevalent species within the Mycobacterium tuberculosis species complex
High intratumoral dihydrotestosterone is associated with antiandrogen resistance in VCaP prostate cancer xenografts in castrated mice
Antiandrogen treatment resistance is a major clinical concern in castration-resistant prostate cancer (CRPC) treatment. Using xenografts of VCaP cells we showed that growth of antiandrogen resistant CRPC tumors were characterized by a higher intratumor dihydrotestosterone (DHT) concentration than that of treatment responsive tumors. Furthermore, the slow tumor growth after adrenalectomy was associated with a low intratumor DHT concentration. Reactivation of androgen signaling in enzalutamide-resistant tumors was further shown by the expression of several androgen-dependent genes. The data indicate that intratumor DHT concentration and expression of several androgen-dependent genes in CRPC lesions is an indication of enzalutamide treatment resistance and an indication of the need for further androgen blockade. The presence of an androgen synthesis, independent of CYP17A1 activity, has been shown to exist in prostate cancer cells, and thus, novel androgen synthesis inhibitors are needed for the treatment of enzalutamide-resistant CRPC tumors that do not respond to abiraterone.Peer reviewe
- …