23 research outputs found

    A New Family of High Oxidation State Antiperovskite Nitrides:La<sub>3</sub>MN<sub>5</sub> (M=Cr, Mn and Mo)

    Get PDF
    Three new nitrides La3MN5 (M=Cr, Mn, and Mo) have been synthesized using a high pressure azide route. These are the first examples of ternary Cs3CoCl5-type nitrides, and show that this (MN4)NLa3 antiperovskite structure type may be used to stabilise high oxidation-state transition metals in tetrahedral molecular [MN4]n− nitridometallate anions. Magnetic measurements confirm that Cr and Mo are in the M6+ state, but the M=Mn phase has an anomalously small paramagnetic moment and large cell volume. Neutron powder diffraction data are fitted using an anion-excess La3MnN5.30 model (space group I4/mcm, a=6.81587(9) Å and c=11.22664(18) Å at 200 K) in which Mn is close to the +7 state. Excess-anion incorporation into Cs3CoCl5-type materials has not been previously reported, and this or other substitution mechanisms may enable many other high oxidation state transition metal nitrides to be prepared.</p

    Green‐Emitting Oxonitridoberyllosilicate Ba[BeSiON2]:Eu2+ for Wide Gamut Displays

    Get PDF
    Light-emitting diodes (LEDs) producing pure, highly saturated colors are the industry standard for efficient backlighting of high-color gamut displays. Vivid color reproduction, matching the eye's perception of nature, is the central paradigm in the design of narrow-band emitting phosphors. To cover a wide range of naturally occurring color tones, expansion of the color gamut in the green spectral region, and therefore an advanced applicable green phosphor, is highly desired. Herein, the oxonitridoberyllosilicate Ba[BeSiON2]:Eu2+ showing outstanding narrow-band green emission (λmax ≈526 nm with FWHM ≈1600 cm−1 (≈45 nm), x = 0.212, y = 0.715) when excited with InGaN-based blue LEDs is presented. High quantum efficiency and low thermal quenching (>90% rel. quantum efficiency at 100 °C) as well as excellent scalability make the material suitable for industrial application in high color-gamut LED displays. A prototype phosphor-converted-LED (pc-LED), with green-emitting Ba[BeSiON2]:Eu2+ and K2SiF6:Mn4+ as red phosphor shows an extraordinary coverage in the CIE 1931 color space of 109% compared to the DCI-P3 standard, topping the widely applied β-SiAlON:Eu2+ phosphor (104%), making it suitable for use in phone displays, monitors, and television screens

    Parallel use of shake flask and microtiter plate online measuring devices (RAMOS and BioLector) reduces the number of experiments in laboratory-scale stirred tank bioreactors

    Get PDF
    Background Conventional experiments in small scale are often performed in a Black Box fashion, analyzing only the product concentration in the final sample. Online monitoring of relevant process characteristics and parameters such as substrate limitation, product inhibition and oxygen supply is lacking. Therefore, fully equipped laboratory-scale stirred tank bioreactors are hitherto required for detailed studies of new microbial systems. However, they are too spacious, laborious and expensive to be operated in larger number in parallel. Thus, the aim of this study is to present a new experimental approach to obtain dense quantitative process information by parallel use of two small-scale culture systems with online monitoring capabilities: Respiration Activity MOnitoring System (RAMOS) and the BioLector device. Results The same mastermix (medium plus microorganisms) was distributed to the different small-scale culture systems: 1) RAMOS device; 2) 48-well microtiter plate for BioLector device; and 3) separate shake flasks or microtiter plates for offline sampling. By adjusting the same maximum oxygen transfer capacity (OTRmax), the results from the RAMOS and BioLector online monitoring systems supplemented each other very well for all studied microbial systems (E. coli, G. oxydans, K. lactis) and culture conditions (oxygen limitation, diauxic growth, auto-induction, buffer effects). Conclusions The parallel use of RAMOS and BioLector devices is a suitable and fast approach to gain comprehensive quantitative data about growth and production behavior of the evaluated microorganisms. These acquired data largely reduce the necessary number of experiments in laboratory-scale stirred tank bioreactors for basic process development. Thus, much more quantitative information is obtained in parallel in shorter time.Cluster of Excellence “Tailor-Made Fuels from Biomass”, which is funded by the Excellence Initiative by the German federal and state governments to promote science and research at German universities

    Bücherschau

    No full text
    corecore