5,412 research outputs found

    A longitudinal study on the efficacy of vision therapy in the treatment of strabismus

    Get PDF
    The original research design involved a recall of 100 successfully treated strabismus patients released from vision therapy one to five years ago. An objective examination was to be performed to determine binocular status, and an analytical exam to determine refractive status, phoric posture, fusional ranges and accommodative ranges. A questionnaire was to be completed by each subject to evaluate subjective changes in the areas of binocularity, diplopia, suppression, and cosmetic alignment. The results were to be evaluated by the Flam Criteria as modified by Ludlam. The percent of the patient population which had retained binocularity by these standards was to be determined. After considerable project modifications, the research data was limited to subjective findings. Seven out of the seven patients surveyed reported (1) satisfaction with the way their eyes were working, (2) they were us1ng both eyes, and (3) considered their eyes properly aligned. Only one patient of seven reported either eye ever turning off. Five out of the seven responding reported that neither eye wandered at any time. These results are comparable to the results of the only previous longitudinal optometric study that has been conducted. According to our data, vision therapy for strabismus does have long-lasting results. Such results should provide impetus to the vision care specialist to provide treatment 1n the form of v1s1on therapy to their strabismus patients

    Employing infrared microscopy (IRM) in combination with a pre-trained neural network to visualise and analyse the defect distribution in Cadmium Telluride crystals

    Get PDF
    While Cadmium Telluride (CdTe) excels in terms of photon radiation absorption properties and outperforms silicon (Si) in this respect, the crystal growth, characterization and processing into a radiation detector is much more complicated. Additionally, large concentrations of extended crystallographic defects, such as grain boundaries, twins, and tellurium (Te) inclusions, vary from crystal to crystal and can reduce the spectroscopic performance of the processed detector. A quality assessment of the material prior to the complex fabrication process is therefore crucial. To locate the Te-defects, we scan the crystals with infrared microscopy (IRM) in different layers, obtaining a 3D view of the defect distribution. This provides us with important information on the defect density and locations of Te inclusions, and thus a handle to assess the quality of the material. For the classification of defects in the large amount of IRM image data, a convolutional neural network is employed. From the post-processed and analysed IRM data, 3D defect maps of the CdTe crystals are created, which make different patterns of defect agglomerations inside the crystals visible. In total, more than 100 crystals were scanned with the current IRM setup. In this paper, we compare two crystal batches, each consisting of 12 samples. We find significant differences in the defect distributions of the crystals.Peer reviewe

    Modeling the impact of defects on the charge collection efficiency of a Cadmium Telluride detector

    Get PDF
    Cadmium telluride is a favorable material for X-ray detection as it has an outstanding characteristic for room temperature operation. It is a high-Z material with excellent photon radiation absorption properties. However, CdTe single crystals may include a large number of extended crystallographic defects, such as grain boundaries, twins, and tellurium (Te) inclusions, which can have an impact on detector performance. A Technology Computer Aided Design (TCAD) local defect model has been developed to investigate the effects of local defects on charge collection efficiency (CCE). We studied a 1 mm thick Schottky-type CdTe radiation detector with transient current technique by using a red laser at room temperature. By raster scanning the detector surface we were able to study signal shaping within the bulk, and to locate surface defects by observing their impact on the CCE. In this paper we present our TCAD model with localized defect, and compare the simulation results to TCT measurements. In the model an inclusion with a diameter of 10 mu m was assumed. The center of the defect was positioned at 6 mu m distance from the surface. We show that the defect has a notable effect on current transients, which in turn affect the CCE of the CdTe detector. The simulated charge collection at the position of the defect decreases by 80 % in comparison to the defect-free case. The simulations show that the defects give a characteristic shape to TCT signal. This can further be used to detect defects in CdTe detectors and to estimate the overall defect density in the material.Peer reviewe

    Processing of AC-coupled n-in-p pixel detectors on MCz silicon using atomic layer deposited aluminium oxide

    Get PDF
    We report on the fabrication of capacitively (AC) coupled n(+)-in-p pixel detectors on magnetic Czochralski silicon substrates. In our devices, we employ a layer of aluminium oxide (Al2O3) grown by atomic layer deposition (ALD) as dielectric and field insulator, instead of the commonly used silicon dioxide (SiO2). As shown in earlier research, Al2O3 thin films exhibit high negative oxide charge, and can thus serve as a substitute for p-stop/p-spray insulation implants between pixels. In addition, they provide far higher capacitance densities than SiO2 due to their high dielectric constant, permitting more efficient capacitive coupling of pixels. Furthermore, metallic titanium nitride (TiN) bias resistors are presented as an alternative to punch-through or poly-Si resistors. Devices obtained by the above mentioned process are characterized by capacitance-voltage and current-voltage measurements, and by 2 MeV proton microprobe. Results show the expected high negative charge of the Al2O3 dielectric, uniform charge collection efficiency over large areas of pixels, and acceptable leakage current densities.Peer reviewe

    Quality assessment of cadmium telluride as a detector material for multispectral medical imaging

    Get PDF
    Cadmiumtelluride (CdTe) is a high-Z material with excellent photon radiation absorption properties, making it a promising material to include in radiation detection technologies. However, the brittleness of CdTe crystals as well as their varying concentration of defects necessitate a thorough quality assessment before the complex detector processing procedure. We present our quality assessment of CdTe as a detector material for multispectralmedical imaging, a research which is conducted as part of the Consortium Project Multispectral Photon-counting for Medical Imaging and Beam characterization (MPMIB). The aim of the project is to develop novel CdTe detectors and obtain spectrum-per-pixel information that make the distinction between different radiation types and tissues possible. To evaluate the defect density inside the crystals - which can deteriorate the detector performance - we employ infrared microscopy (IRM). Posterior data analysis allows us to visualise the defect distributions as 3D defect maps. Additionally, we investigate front and backside differences of the material with current-voltage (IV) measurements to determine the preferred surface for the pixelisation of the crystal, and perform test measurements with the prototypes to provide feedback for further processing. We present the different parts of our quality assessment chain and will close with first experimental results obtained with one of our prototype photon-counting detectors in a small tomographic setup.Peer reviewe

    Measurement of electroweak WZ boson production and search for new physics in WZ plus two jets events in pp collisions at root s=13 TeV

    Get PDF
    A measurement of WZ electroweak (EW) vector boson scattering is presented. The measurement is performed in the leptonic decay modes WZ -> l nu l'l', where l, l' = e, mu. The analysis is based on a data sample of proton-proton collisions at root s = 13 TeV at the LHC collected with the CMS detector and corresponding to an integrated luminosity of 35.9 fb(-1) . The WZ plus two jet production cross section is measured in fiducial regions with enhanced contributions from EW production and found to be consistent with standard model predictions. The EW WZ production in association with two jets is measured with an observed (expected) significance of 2.2 (2.5) standard deviations. Constraints on charged Higgs boson production and on anomalous quartic gauge couplings in terms of dimension-eight effective field theory operators are also presented. (C) 2019 The Author(s). Published by Elsevier B.V.Peer reviewe

    Study of jet quenching with isolated-photon plus jet correlations in PbPb and pp collisions at root s(NN)=5.02 TeV

    Get PDF
    Measurements of azimuthal angle and transverse momentum (p(T)) correlations of isolated photons and associated jets are reported for pp and PbPb collisions at root s(NN) = 5.02 TeV. The data were recorded with the CMS detector at the CERN LHC. For events containing a leading isolated photon with p(T)(gamma) > 40 GeV/c and an associated jet with p(T)(jet) > 30 GeV/c, the photon+jet azimuthal correlation and p(T) imbalance in PbPb collisions are studied as functions of collision centrality and p(T)(gamma). The results are compared to pp reference data collected at the same collision energy and to predictions from several theoretical models for parton energy loss. No evidence of broadening of the photon+jet azimuthal correlations is observed, while the ratio p(T)(jet)/p(T)(gamma) decreases significantly for PbPb data relative to the pp reference. All models considered agree within uncertainties with the data. The number of associated jets per photon with p(T)(gamma) > 80GeV/c is observed to be shifted towards lower p(T)(jet) in central PbPb collisions compared to pp collisions. (C) 2018 The Author. Published by Elsevier B.V.Peer reviewe

    Search for Z gamma resonances using leptonic and hadronic final states in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for resonances decaying to a Z boson and a photon. The analysis is based on data from proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), and collected with the CMS detector at the LHC in 2016. Two decay modes of the Z boson are investigated. In the leptonic channels, the Z boson candidates are reconstructed using electron or muon pairs. In the hadronic channels, they are identified using a large-radius jet, containing either light-quark or b quark decay products of the Z boson, via jet substructure and advanced b quark tagging techniques. The results from these channels are combined and interpreted in terms of upper limits on the product of the production cross section and the branching fraction to Z gamma for narrow and broad spin-0 resonances with masses between 0.35 and 4.0 TeV, providing thereby the most stringent limits on such resonances.Peer reviewe

    Characterization of magnetic Czochralski silicon devices with aluminium oxide field insulator : effect of oxygen precursor on electrical properties and radiation hardness

    Get PDF
    Aluminium oxide (Al2O3) has been proposed as an alternative to thermal silicon dioxide (SiO2) as field insulator and surface passivation for silicon detectors, where it could substitute p-stop/p-spray insulation implants between pixels due to its negative oxide charge, and enable capacitive coupling of segments by means of its higher dielectric constant. Al2O3 is commonly grown by atomic layer deposition (ALD), which allows the deposition of thin layers with excellent precision. In this work, we report the electrical characterization of single pad detectors (diodes) and MOS capacitors fabricated on magnetic Czochralski silicon substrates and using Al2O3 as field insulator. Devices are studied by capacitance-voltage, current-voltage, and transient current technique measurements. We evaluate the influence of the oxygen precursors in the ALD process, as well as the effect of gamma irradiation, on the properties of these devices. We observe that leakage currents in diodes before the onset of breakdown are low for all studied ALD processes. Charge collection as measured by transient current technique (TCT) is also independent of the choice of oxygen precursor. The Al2O3 films deposited with O-3 possess a higher negative oxide charge than films deposited by H2O, However, in diodes a higher oxide charge is linked to earlier breakdown, as has been predicted by simulation studies. A combination of H2O and O-3 precursors results in a good compromise between the beneficial properties provided by the respective individual precursors.Peer reviewe

    Combined search for electroweak production of charginos and neutralinos in proton-proton collisions at root s=13 TeV

    Get PDF
    A statistical combination of several searches for the electroweak production of charginos and neutralinos is presented. All searches use proton-proton collision data at A root s = 13 TeV, recorded with the CMS detector at the LHC in 2016 and corresponding to an integrated luminosity of 35.9 fb(-1). In addition to the combination of previous searches, a targeted analysis requiring three or more charged leptons (electrons or muons) is presented, focusing on the challenging scenario in which the difference in mass between the two least massive neutralinos is approximately equal to the mass of the Z boson. The results are interpreted in simplified models of chargino-neutralino or neutralino pair production. For chargino-neutralino production, in the case when the lightest neutralino is massless, the combination yields an observed (expected) limit at the 95% confidence level on the chargino mass of up to 650 (570) GeV, improving upon the individual analysis limits by up to 40 GeV. If the mass difference between the two least massive neutralinos is approximately equal to the mass of the Z boson in the chargino-neutralino model, the targeted search requiring three or more leptons obtains observed and expected exclusion limits of around 225 GeV on the second neutralino mass and 125 GeV on the lightest neutralino mass, improving the observed limit by about 60 GeV in both masses compared to the previous CMS result. In the neutralino pair production model, the combined observed (expected) exclusion limit on the neutralino mass extends up to 650-750 (550-750) GeV, depending on the branching fraction assumed. This extends the observed exclusion achieved in the individual analyses by up to 200 GeV. The combined result additionally excludes some intermediate gaps in the mass coverage of the individual analyses.Peer reviewe
    • …
    corecore