264 research outputs found

    Conversion of gaseous nitrogen dioxide to nitrate and nitrite on aqueous surfactants

    Get PDF
    The hydrolytic disproportionation of gaseous NO2 on water's surface (2 NO_2 + H_2O → HONO + NO_3- + H+) (R1) has long been deemed to play a key, albeit unquantifiable role in tropospheric chemistry. We recently found that (R1) is dramatically accelerated by anions in experiments performed on aqueous microjets monitored by online electrospray mass spectrometry. This finding let us rationalize unresolved discrepancies among previous laboratory results and suggested that under realistic environmental conditions (R1) should be affected by everpresent surfactants. Herein, we report that NO_2(g) uptake is significantly enhanced by cationic surfactants, weakly inhibited by fulvic acid (FA, a natural polycarboxylic acid) and anionic surfactants, and unaffected by 1-octanol. Surfactants appear to modulate interfacial anion coverage via electrostatic interactions with charged headgroups. We show that (R1) should be the dominant mechanism for the heterogeneous conversion of NO_2(g) to HONO under typical atmospheric conditions throughout the day. The photoinduced reduction of NO_2 into HONO on airborne soot might play a limited role during daytime

    Static structure factor of liquid parahydrogen

    Get PDF
    7 págs.; 5 figs. ; PACS number~s!: 61.20.2p, 61.12.2q, 78.70.2gThe single-differential neutron-scattering cross section of liquid parahydrogen has been measured at 15.2 K and 2 bars of applied pressure by means of low-energy neutron diffraction. Our experimental conditions enable the direct observation of the peak of the liquid structure factor and therefore largely improve the signal-to-noise ratio with respect to measurements carried out using higher-energy neutron diffraction. This avoids the need of performing corrections of approximate nature to the measured cross section that is dominated by molecular rotational components if measured by conventional neutron diffraction. ©2004 American Physical SocietyPeer Reviewe

    Cardiomyocyte-specific inactivation of thyroid hormone in pathologic ventricular hypertrophy: an adaptative response or part of the problem?

    Get PDF
    Recent studies in various rodent models of pathologic ventricular hypertrophy report the re-expression of deiodinase type 3 (D3) in cardiomyocytes. D3 inactivates thyroid hormone (T3) and is mainly expressed in tissues during development. The stimulation of D3 activity in ventricular hypertrophy and subsequent heart failure is associated with severe impairment of cardiac T3 signaling. Hypoxia-induced signaling appears to drive D3 expression in the hypertrophic cardiomyocyte, but other signaling cascades implicated in hypertrophy are also capable of stimulating transcription of the DIO3 gene. Many cardiac genes are transcriptionally regulated by T3 and impairment of T3 signaling will not only reduce energy turnover, but also lead to changes in gene expression that contribute to contractile dysfunction in pathologic remodeling. Whether stimulation of D3 activity and the ensuing local T3-deficiency is an adaptive response of the stressed heart or part of the pathologic signaling network leading to heart failure, remains to be established

    Event Rates of Gravitational Waves from merging Intermediate mass Black Holes: based on a Runaway Path to a SMBH

    Get PDF
    Based on a dynamical formation model of a supermassive black hole (SMBH), we estimate the expected observational profile of gravitational wave at ground-based detectors, such as KAGRA or advanced LIGO/VIRGO. Noting that the second generation of detectors have enough sensitivity from 10 Hz and up, we are able to detect the ring-down gravitational wave of a BH with the mass M 1 per year for ρ = 10. Thus, if we observe a BH with more than 100M⊙ in future gravitational-wave observations, our model naturally explains its source

    Oxidant-NO dependent gene regulation in dogs with type I diabetes: impact on cardiac function and metabolism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mechanisms responsible for the cardiovascular mortality in type I diabetes (DM) have not been defined completely. We have shown in conscious dogs with DM that: <it>1</it>) baseline coronary blood flow (CBF) was significantly decreased, <it>2</it>) endothelium-dependent (ACh) coronary vasodilation was impaired, and <it>3</it>) reflex cholinergic NO-dependent coronary vasodilation was selectively depressed. The most likely mechanism responsible for the depressed reflex cholinergic NO-dependent coronary vasodilation was the decreased bioactivity of NO from the vascular endothelium. The goal of this study was to investigate changes in cardiac gene expression in a canine model of alloxan-induced type 1 diabetes.</p> <p>Methods</p> <p>Mongrel dogs were chronically instrumented and the dogs were divided into two groups: one normal and the other diabetic. In the diabetic group, the dogs were injected with alloxan monohydrate (40-60 mg/kg iv) over 1 min. The global changes in cardiac gene expression in dogs with alloxan-induced diabetes were studied using Affymetrix Canine Array. Cardiac RNA was extracted from the control and DM (n = 4).</p> <p>Results</p> <p>The array data revealed that 797 genes were differentially expressed (P < 0.01; fold change of at least ±2). 150 genes were expressed at significantly greater levels in diabetic dogs and 647 were significantly reduced. There was no change in eNOS mRNA. There was up regulation of some components of the NADPH oxidase subunits (gp91 by 2.2 fold, P < 0.03), and down-regulation of SOD1 (3 fold, P < 0.001) and decrease (4 - 40 fold) in a large number of genes encoding mitochondrial enzymes. In addition, there was down-regulation of Ca<sup>2+ </sup>cycling genes (ryanodine receptor; SERCA2 Calcium ATPase), structural proteins (actin alpha). Of particular interests are genes involved in glutathione metabolism (glutathione peroxidase 1, glutathione reductase and glutathione S-transferase), which were markedly down regulated.</p> <p>Conclusion</p> <p>our findings suggest that type I diabetes might have a direct effect on the heart by impairing NO bioavailability through oxidative stress and perhaps lipid peroxidases.</p

    GPR30, the Non-Classical Membrane G Protein Related Estrogen Receptor, Is Overexpressed in Human Seminoma and Promotes Seminoma Cell Proliferation

    Get PDF
    BACKGROUND: Testicular germ cell tumours are the most frequent cancer of young men with an increasing incidence all over the world. Pathogenesis and reasons of this increase remain unknown but epidemiological and clinical data have suggested that fetal exposure to environmental endocrine disruptors (EEDs) with estrogenic effects, could participate to testicular germ cell carcinogenesis. However, these EEDs (like bisphenol A) are often weak ligands for classical nuclear estrogen receptors. Several research groups recently showed that the non classical membrane G-protein coupled estrogen receptor (GPER/GPR30) mediates the effects of estrogens and several xenoestrogens through rapid non genomic activation of signal transduction pathways in various human estrogen dependent cancer cells (breast, ovary, endometrium). The aim of this study was to demonstrate that GPER was overexpressed in testicular tumours and was able to trigger JKT-1 seminoma cell proliferation. RESULTS: We report here for the first time a complete morphological and functional characterization of GPER in normal and malignant human testicular germ cells. In normal adult human testes, GPER was expressed by somatic (Sertoli cells) and germ cells (spermatogonia and spermatocytes). GPER was exclusively overexpressed in seminomas, the most frequent testicular germ cell cancer, localized at the cell membrane and triggered a proliferative effect on JKT-1 cells in vitro, which was completely abolished by G15 (a GPER selective antagonist) and by siRNA invalidation. CONCLUSION: These results demonstrate that GPER is expressed by human normal adult testicular germ cells, specifically overexpressed in seminoma tumours and able to trigger seminoma cell proliferation in vitro. It should therefore be considered rather than classical ERs when xeno-estrogens or other endocrine disruptors are assessed in testicular germ cell cancers. It may also represent a prognosis marker and/or a therapeutic target for seminomas

    Animal models of cardiorenal syndrome: a review

    Get PDF
    The incidence of heart failure and renal failure is increasing and is associated with poor prognosis. Moreover, these conditions do often coexist and this coexistence results in worsened outcome. Various mechanisms have been proposed as an explanation of this interrelation, including changes in hemodynamics, endothelial dysfunction, inflammation, activation of renin-angiotensin-aldosterone system, and/or sympathetic nervous system. However, the exact mechanisms initializing and maintaining this interaction are still unknown. In many experimental studies on cardiac or renal dysfunction, the function of the other organ was either not addressed or the authors failed to show any decline in its function despite histological changes. There are few studies in which the dysfunction of both heart and kidney function has been described. In this review, we discuss animal models of combined cardiorenal dysfunction. We show that translation of the results from animal studies is limited, and there is a need for new and better models of the cardiorenal interaction to improve our understanding of this syndrome. Finally, we propose several requirements that a new animal model should meet to serve as a tool for studies on the cardiorenal syndrome
    corecore