5 research outputs found

    X-RAY FLASHES IN RECURRENT NOVAE: M31N 2008-12a AND THE IMPLICATIONS OF THE SWIFT NONDETECTION

    Full text link
    Models of nova outbursts suggest that an X-ray flash should occur just after hydrogen ignition. However, this X-ray flash has never been observationally confirmed. We present four theoretical light curves of the X-ray flash for two very massive white dwarfs (WDs) of 1.380 and 1.385 M{M}_{\odot } and for two recurrence periods of 0.5 and 1 yr. The duration of the X-ray flash is shorter for a more massive WD and for a longer recurrence period. The shortest duration of 14 hr (0.6 days) among the four cases is obtained for the 1.385M1.385\,{M}_{\odot } WD with a 1 yr recurrence period. In general, a nova explosion is relatively weak for a very short recurrence period, which results in a rather slow evolution toward the optical peak. This slow timescale and the predictability of very short recurrence period novae give us a chance to observe X-ray flashes of recurrent novae. In this context, we report the first attempt, using the Swift observatory, to detect an X-ray flash of the recurrent nova M31N 2008-12a (0.5 or 1 yr recurrence period), which resulted in the nondetection of X-ray emission during the period of 8 days before the optical detection. We discuss the impact of these observations on nova outburst theory. The X-ray flash is one of the last frontiers of nova studies, and its detection is essential for understanding the pre-optical-maximum phase. We encourage further observations

    Disabled people could be part of the answer to the fostering crisis

    No full text
    We report performance verification observations of the giant elliptical galaxy M 87 in the Virgo Cluster with the MOS, pn, and optical monitor instruments on board of XMM-Newton. With the energy sensitive imaging instruments MOS and pn we obtain the first spatially constrained X-ray spectra of the nucleus and the jet of the galaxy. The good photon statistics of the pn and MOS allow a detailed analysis of the radial temperature and abundance distribution of 6 elements. The data provide no indication of a multi-temperature structure for radii \ge 2'. An apparent sharp metal abundance drop deduced for the regions inside this radius is probably due to resonant line scattering

    Demonstrating the likely neutron star nature of five M31 globular cluster sources with Swift-NuSTAR spectroscopy

    Get PDF
    We present the results of a joint Swift-NuSTAR spectroscopy campaign on M31. We focus on the five brightest globular cluster X-ray sources in our fields. Two of these had previously been argued to be black hole candidates on the basis of apparent hard-state spectra at luminosities above those for which neutron stars are in hard states. We show that these two sources are likely to be Z-sources (i.e. low magnetic field neutron stars accreting near their Eddington limits), or perhaps bright atoll sources (low magnetic field neutron stars which are just a bit fainter than this level) on the basis of simultaneous Swift and NuSTAR spectra which cover a broader range of energies. These new observations reveal spectral curvature above 6-8 keV that would be hard to detect without the broader energy coverage the NuSTAR data provide relative to Chandra and XMM-Newton. We show that the other three sources are also likely to be bright neutron star X-ray binaries, rather than black hole X-ray binaries. We discuss why it should already have been realized that it was unlikely that these objects were black holes on the basis of their being persistent sources, and we re-examine past work which suggested that tidal capture products would be persistently bright X-ray emitters. We discuss how this problem is likely due to neglecting disk winds in older work that predict which systems will be persistent and which will be transient

    The prompt-afterglow connection in gamma-ray bursts: a comprehensive statistical analysis of Swift X-ray light curves

    Get PDF
    We present a comprehensive statistical analysis of Swift X-ray light curves of gamma-ray bursts (GRBs) collecting data from more than 650 GRBs discovered by Swift and other facilities. The unprecedented sample size allows us to constrain the rest-frame X-ray properties of GRBs from a statistical perspective, with particular reference to intrinsic time-scales and the energetics of the different light-curve phases in a common rest-frame 0.3–30 keV energy band. Temporal variability episodes are also studied and their properties constrained. Two fundamental questions drive this effort: (i) Does the X-ray emission retain any kind of ‘memory’ of the prompt γ-ray phase? (ii) Where is the dividing line between long and short GRB X-ray properties? We show that short GRBs decay faster, are less luminous and less energetic than long GRBs in the X-rays, but are interestingly characterized by similar intrinsic absorption. We furthermore reveal the existence of a number of statistically significant relations that link the X-ray to prompt γ-ray parameters in long GRBs; short GRBs are outliers of the majority of these two-parameter relations. However and more importantly, we report on the existence of a universal three-parameter scaling that links the X-ray and the γ-ray energy to the prompt spectral peak energy of both long and short GRBs: EX, iso∝E[Superscript: 1.00 ± 0.06]γ, iso/E[Superscript: 0.60 ± 0.10]pk
    corecore