2,134 research outputs found

    The broad emission-line region: the confluence of the outer accretion disc with the inner edge of the dusty torus

    Full text link
    (Abridged) We investigate the observational characteristics of BLR geometries in which the BLR clouds bridge the gap, both in distance and scale height, between the outer accretion disc and the hot dust, forming an effective surface of a "bowl". The gas dynamics are dominated by gravity, and we include the effects of transverse Doppler shift, gravitational redshift and scale-height dependent macro-turbulence. Our simple model reproduces many of the phenomena observed in broad emission-line variability studies, including (i) the absence of response in the core of the optical recombination lines on short timescales, (ii) the enhanced red-wing response on short timescales, (iii) differences between the measured delays for the HILs and LILs, and (iv) identifies turbulence as a means of producing Lorentzian profiles (esp. for LILs) in low inclination systems, and for suppressing significant continuum--emission-line delays between the line wings and line core (esp. in LILs). A key motivation of this work was to reveal the physical underpinnings of the reported measurements of SMBH masses and their uncertainties. We find that SMBH masses derived from measurements of the fwhm of the mean and rms profiles show the closest correspondence between the emission lines in a single object, even though the emission line fwhm is a more biased mass indicator with respect to inclination. The predicted large discrepancies in the SMBH mass estimates between emission lines at low inclination, as derived using the line dispersion, we suggest may be used as a means of identifying near face-on systems. Our general results do not depend on specific choices in the simplifying assumptions, but are in fact generic properties of BLR geometries with axial symmetry that span a substantial range in radially-increasing scale height supported by turbulence, which then merge into the inner dusty TOR.Comment: 29 pages, 23 figures and 1 tabl

    Tuning the scattering length with an optically induced Feshbach resonance

    Full text link
    We demonstrate optical tuning of the scattering length in a Bose-Einstein condensate as predicted by Fedichev {\em et al.} [Phys. Rev. Lett. {\bf 77}, 2913 (1996)]. In our experiment atoms in a 87^{87}Rb condensate are exposed to laser light which is tuned close to the transition frequency to an excited molecular state. By controlling the power and detuning of the laser beam we can change the atomic scattering length over a wide range. In view of laser-driven atomic losses we use Bragg spectroscopy as a fast method to measure the scattering length of the atoms.Comment: submitted to PRL, 5 pages, 5 figure

    Maximal Oxygen Uptake, Sweating and Tolerance to Exercise in the Heat

    Get PDF
    The physiological mechanisms that facilitate acute acclimation to heat have not been fully elucidated, but the result is the establishment of a more efficient cardiovascular system to increase heat dissipation via increased sweating that allows the acclimated man to function with a cooler internal environment and to extend his performance. Men in good physical condition with high maximal oxygen uptakes generally acclimate to heat more rapidly and retain it longer than men in poorer condition. Also, upon first exposure trained men tolerate exercise in the heat better than untrained men. Both resting in heat and physical training in a cool environment confer only partial acclimation when first exposed to work in the heat. These observations suggest separate additive stimuli of metabolic heat from exercise and environmental heat to increase sweating during the acclimation process. However, the necessity of utilizing physical exercise during acclimation has been questioned. Bradbury et al. (1964) have concluded exercise has no effect on the course of heat acclimation since increased sweating can be induced by merely heating resting subjects. Preliminary evidence suggests there is a direct relationship between the maximal oxygen uptake and the capacity to maintain thermal regulation, particularly through the control of sweating. Since increased sweating is an important mechanism for the development of heat acclimation, and fit men have high sweat rates, it follows that upon initial exposure to exercise in the heat, men with high maximal oxygen uptakes should exhibit less strain than men with lower maximal oxygen uptakes. The purpose of this study was: (1) to determine if men with higher maximal oxygen uptakes exhibit greater tolerance than men with lower oxygen uptakes during early exposure to exercise in the heat, and (2) to investigate further the mechanism of the relationship between sweating and maximal work capacity

    Structural Fluctuations in the Spin Liquid State of Tb2Ti2O7

    Full text link
    High resolution X-ray scattering measurements on single crystal Tb2Ti2O7 reveal finite structural correlations at low temperatures. This geometrically frustrated pyrochlore is known to exhibit a spin liquid, or cooperative paramagnetic state, at temperatures below ~ 20 K. Parametric studies of structural Bragg peaks appropriate to the Fd3ˉ\bar{3}m space group of Tb2Ti2O7 reveal substantial broadening and peak intensity reduction in the temperature regime 20 K to 300 mK. We also observe a small, anomalous lattice expansion on cooling below a density maximum at ~ 18 K. These measurements are consistent with the development of fluctuations above a cooperative Jahn-Teller, cubic-tetragonal phase transition at very low temperatures.Comment: 5 pages, 4 figures, submitted for publicatio

    Accelerated fast spin-echo magnetic resonance imaging of the heart using a self-calibrated split-echo approach

    Get PDF
    PURPOSE: Design, validation and application of an accelerated fast spin-echo (FSE) variant that uses a split-echo approach for self-calibrated parallel imaging. METHODS: For self-calibrated, split-echo FSE (SCSE-FSE), extra displacement gradients were incorporated into FSE to decompose odd and even echo groups which were independently phase encoded to derive coil sensitivity maps, and to generate undersampled data (reduction factor up to R = 3). Reference and undersampled data were acquired simultaneously. SENSE reconstruction was employed. RESULTS: The feasibility of SCSE-FSE was demonstrated in phantom studies. Point spread function performance of SCSE-FSE was found to be competitive with traditional FSE variants. The immunity of SCSE-FSE for motion induced mis-registration between reference and undersampled data was shown using a dynamic left ventricular model and cardiac imaging. The applicability of black blood prepared SCSE-FSE for cardiac imaging was demonstrated in healthy volunteers including accelerated multi-slice per breath-hold imaging and accelerated high spatial resolution imaging. CONCLUSION: SCSE-FSE obviates the need of external reference scans for SENSE reconstructed parallel imaging with FSE. SCSE-FSE reduces the risk for mis-registration between reference scans and accelerated acquisitions. SCSE-FSE is feasible for imaging of the heart and of large cardiac vessels but also meets the needs of brain, abdominal and liver imaging
    • …
    corecore