1,057 research outputs found
The uncombed penumbra
The uncombed penumbral model explains the structure of the sunspot penumbra
in terms of thick magnetic fibrils embedded in a magnetic surrounding
atmosphere. This model has been successfully applied to explain the
polarization signals emerging from the sunspot penumbra. Thick penumbral
fibrils face some physical problems, however. In this contribution we will
offer possible solutions to these shortcomings.Comment: 6 pages, 2 figures. to appear in the proceedings of the Solar
Polarization Workshop I
Waves as the source of apparent twisting motions in sunspot penumbrae
The motion of dark striations across bright filaments in a sunspot penumbra
has become an important new diagnostic of convective gas flows in penumbral
filaments. The nature of these striations has, however, remained unclear. Here
we present an analysis of small scale motions in penumbral filaments in both
simulations and observations. The simulations, when viewed from above, show
fine structure with dark lanes running outwards from the dark core of the
penumbral filaments. The dark lanes either occur preferentially on one side or
alternate between both sides of the filament. We identify this fine structure
with transverse (kink) oscillations of the filament, corresponding to a
sideways swaying of the filament. These oscillations have periods in the range
of 5-7 min and propagate outward and downward along the filament. Similar
features are found in observed G-band intensity time series of penumbral
filaments in a sunspot located near disk center obtained by the Broadband
Filter Imager (BFI) on board {\it Hinode}. We also find that some filaments
show dark striations moving to both sides of the filaments. Based on the
agreement between simulations and observations we conclude that the motions of
these striations are caused by transverse oscillations of the underlying bright
filaments.Comment: Accepted for publication in Astrophysical Journal on 8th April 201
Astrophysical Fluid Dynamics via Direct Statistical Simulation
In this paper we introduce the concept of Direct Statistical Simulation (DSS)
for astrophysical flows. This technique may be appropriate for problems in
astrophysical fluids where the instantaneous dynamics of the flows are of
secondary importance to their statistical properties. We give examples of such
problems including mixing and transport in planets, stars and disks. The method
is described for a general set of evolution equations, before we consider the
specific case of a spectral method optimised for problems on a spherical
surface. The method is illustrated for the simplest non-trivial example of
hydrodynamics and MHD on a rotating spherical surface. We then discuss possible
extensions of the method both in terms of computational methods and the range
of astrophysical problems that are of interest.Comment: 26 pages, 11 figures, added clarifying remarks and references, and
corrected typos. This version is accepted for publication in The
Astrophysical Journa
Local helioseismology of sunspot regions: comparison of ring-diagram and time-distance results
Local helioseismology provides unique information about the subsurface
structure and dynamics of sunspots and active regions. However, because of
complexity of sunspot regions local helioseismology diagnostics require careful
analysis of systematic uncertainties and physical interpretation of the
inversion results. We present new results of comparison of the ring-diagram
analysis and time-distance helioseismology for active region NOAA 9787, for
which a previous comparison showed significant differences in the subsurface
sound-speed structure, and discuss systematic uncertainties of the measurements
and inversions. Our results show that both the ring-diagram and time-distance
techniques give qualitatively similar results, revealing a characteristic
two-layer seismic sound-speed structure consistent with the results for other
active regions. However, a quantitative comparison of the inversion results is
not straightforward. It must take into account differences in the sensitivity,
spatial resolution and the averaging kernels. In particular, because of the
acoustic power suppression, the contribution of the sunspot seismic structure
to the ring-diagram signal can be substantially reduced. We show that taking
into account this effect reduces the difference in the depth of transition
between the negative and positive sound-speed variations inferred by these
methods. Further detailed analysis of the sensitivity, resolution and averaging
properties of the local helioseismology methods is necessary for consolidation
of the inversion results. It seems to be important that both methods indicate
that the seismic structure of sunspots is rather deep and extends to at least
20 Mm below the surface, putting constraints on theoretical models of sunspots.Comment: 10 pages, 10 figures, submitted to Journal of Physics: Conference
Series (JPCS) GONG 2010 - SoHO 24 "A new era of seismology of the Sun and
solar-like stars", June 27 - July 2, 2010 Aix-en-Provence, Franc
Spin-Boson Hamiltonian and Optical Absorption of Molecular Dimers
An analysis of the eigenstates of a symmetry-broken spin-boson Hamiltonian is
performed by computing Bloch and Husimi projections. The eigenstate analysis is
combined with the calculation of absorption bands of asymmetric dimer
configurations constituted by monomers with nonidentical excitation energies
and optical transition matrix elements. Absorption bands with regular and
irregular fine structures are obtained and related to the transition from the
coexistence to a mixing of adiabatic branches in the spectrum. It is shown that
correlations between spin states allow for an interpolation between absorption
bands for different optical asymmetries.Comment: 15 pages, revTeX, 8 figures, accepted for publication in Phys. Rev.
Scientific collaboration with educators: practical insights from an in‐class noise‐reduction intervention
Moving the field of Mind, Brain, and Education forward requires researchers and educators to reframe the boundaries of their own discipline in order to create knowledge that is both scientifically based, and of practical relevance for education. We believe that this could be done by co‐constructing research projects from the start. We present a case study of a noise‐reduction intervention in elementary classrooms, in which teachers and researchers worked together from the onset of study design. We examine the processes behind: (1) selecting research questions and measures, (2) planning interventions, (3) receiving ethical approval and funding, (4) recruiting schools, and (5) collecting data. At each step, our study provides suggestions for future collaborative efforts, keeping in mind broader theoretical and methodological implications. We believe that our concrete examples and suggestions will be useful for beginning and confirmed researchers, as well as teachers aiming to know more about research projects
Convective motions and net circular polarization in sunspot penumbrae
We have employed a penumbral model, that includes the Evershed flow and
convective motions inside penumbral filaments, to reproduce the azimuthal
variation of the net circular polarization (NCP) in sunspot penumbrae at
different heliocentric angles for two different spectral lines. The theoretical
net circular polarization fits the observations as satisfactorily as penumbral
models based on flux-tubes. The reason for this is that the effect of
convective motions on the NCP is very small compared to the effect of the
Evershed flow. In addition, the NCP generated by convective upflows cancels out
the NCP generated by the downflows. We have also found that, in order to fit
the observed NCP, the strength of the magnetic field inside penumbral filaments
must be very close to 1000 G. In particular, field-free or weak-field filaments
fail to reproduce both the correct sign of the net circular polarization, as
well as its dependence on the azimuthal and heliocentric angles.Comment: Accepted for publication in the Astrophysical Journal. 10 pages, 7
figures (3 in color). Uses emulatedap
- …