124,569 research outputs found

    Theory of a general class of dissipative processes

    Get PDF
    General theory of dissipative periodic processes for systems defined by partial, functional, or neutral differential equation

    Liner radius fluctuations in a high-gain Cherenkov free-electron laser

    Get PDF
    Phase shifts in the propagating electromagnetic field of a Cherenkov free-electron laser (CFEL) can affect its gain. The phase velocity of an electromagnetic wave varies, for example, when the lined waveguide is inhomogeneous along its length. In this paper, we study quantitatively the saturated power of a particular CFEL at both weak and strong electron-beam pumping when the inner radius of the liner contains fluctuations along the waveguide. We show that the gain bandwidth of the CFEL is substantially broadened when the CFEL is pumped with a high-current beam. We also show that the design of a CFEL needs to include optimization with respect to sensitivity to liner fluctuations, especially for weakly pumped CFELs, that is, CFELs that use a low-current electron-beam density. This optimization can be relaxed for more strongly pumped CFELs

    Electronic structure of the ferromagnetic superconductor UCoGe from first principles

    Full text link
    The superconductor UCoGe is analyzed with electronic structure calculations using Linearized Augmented Plane Wave method based on Density Functional Theory. Ferromagnetic and antiferromagnetic calculations with and without correlations (via LDA+U) were done. In this compound the Fermi level is situated in a region where the main contribution to DOS comes from the U-5f orbital. The magnetic moment is mainly due to the Co-3d orbital with a small contribution from the U-5f orbital. The possibility of fully non-collinear magnetism in this compound seems to be ruled out. These results are compared with the isostructural compound URhGe, in this case the magnetism comes mostly from the U-5f orbital

    Breakup of Shearless Meanders and "Outer" Tori in the Standard Nontwist Map

    Full text link
    The breakup of shearless invariant tori with winding number ω=[0,1,11,1,1,...]\omega=[0,1,11,1,1,...] (in continued fraction representation) of the standard nontwist map is studied numerically using Greene's residue criterion. Tori of this winding number can assume the shape of meanders (folded-over invariant tori which are not graphs over the x-axis in (x,y)(x,y) phase space), whose breakup is the first point of focus here. Secondly, multiple shearless orbits of this winding number can exist, leading to a new type of breakup scenario. Results are discussed within the framework of the renormalization group for area-preserving maps. Regularity of the critical tori is also investigated.Comment: submitted to Chao

    Energy landscapes, ideal glasses, and their equation of state

    Full text link
    Using the inherent structure formalism originally proposed by Stillinger and Weber [Phys. Rev. A 25, 978 (1982)], we generalize the thermodynamics of an energy landscape that has an ideal glass transition and derive the consequences for its equation of state. In doing so, we identify a separation of configurational and vibrational contributions to the pressure that corresponds with simulation studies performed in the inherent structure formalism. We develop an elementary model of landscapes appropriate to simple liquids which is based on the scaling properties of the soft-sphere potential complemented with a mean-field attraction. The resulting equation of state provides an accurate representation of simulation data for the Lennard-Jones fluid, suggesting the usefulness of a landscape-based formulation of supercooled liquid thermodynamics. Finally, we consider the implications of both the general theory and the model with respect to the so-called Sastry density and the ideal glass transition. Our analysis shows that a quantitative connection can be made between properties of the landscape and a simulation-determined Sastry density, and it emphasizes the distinction between an ideal glass transition and a Kauzmann equal-entropy condition.Comment: 11 pages, 3 figure

    The loss of anisotropy in MgB2 with Sc substitution and its relationship with the critical temperature

    Full text link
    The electrical conductivity anisotropy of the sigma-bands is calculated for the (Mg,Sc)B2 system using a virtual crystal model. Our results reveal that anisotropy drops with relatively little scandium content (< 30%); this behaviour coincides with the lowering of Tc and the reduction of the Kohn anomaly. This anisotropy loss is also found in the Al and C doped systems. In this work it is argued that the anisotropy, or 2D character, of the sigma-bands is an important parameter for the understanding of the high Tc found in MgB2

    Research in the general area of non-linear dynamical systems Final report, 8 Jun. 1965 - 8 Jun. 1967

    Get PDF
    Nonlinear dynamical systems research on systems stability, invariance principles, Liapunov functions, and Volterra and functional integral equation

    Labyrinthine Island Growth during Pd/Ru(0001) Heteroepitaxy

    Get PDF
    Using low energy electron microscopy we observe that Pd deposited on Ru only attaches to small sections of the atomic step edges surrounding Pd islands. This causes a novel epitaxial growth mode in which islands advance in a snakelike motion, giving rise to labyrinthine patterns. Based on density functional theory together with scanning tunneling microscopy and low energy electron microscopy we propose that this growth mode is caused by a surface alloy forming around growing islands. This alloy gradually reduces step attachment rates, resulting in an instability that favors adatom attachment at fast advancing step sections
    corecore