59,940 research outputs found

    Dynamical cluster-decay model for hot and rotating light-mass nuclear systems, applied to low-energy 32^{32}S + 24^{24}Mg 56\to ^{56}Ni reaction

    Full text link
    The dynamical cluster-decay model (DCM) is developed further for the decay of hot and rotating compound nuclei (CN) formed in light heavy-ion reactions. The model is worked out in terms of only one parameter, namely the neck-length parameter, which is related to the total kinetic energy TKE(T) or effective Q-value Qeff(T)Q_{eff}(T) at temperature T of the hot CN, defined in terms of the both the light-particles (LP), with AA \leq 4, Z \leq 2, as well as the complex intermediate mass fragments (IMF), with 424 2, is considered as the dynamical collective mass motion of preformed clusters through the barrier. Within the same dynamical model treatment, the LPs are shown to have different characteristics as compared to the IMFs. The systematic variation of the LP emission cross section σLP\sigma_{LP}, and IMF emission cross section σIMF\sigma_{IMF}, calculated on the present DCM match exactly the statistical fission model predictions. It is for the first time that a non-statistical dynamical description is developed for the emission of light-particles from the hot and rotating CN. The model is applied to the decay of 56^{56}Ni formed in the 32^{32}S + 24^{24}Mg reaction at two incident energies Ec.m._{c.m.} = 51.6 and 60.5 MeV. Both the IMFs and average TKEˉ\bar{TKE} spectra are found to compare reasonably nicely with the experimental data, favoring asymmetric mass distributions. The LPs emission cross section is shown to depend strongly on the type of emitted particles and their multiplicities

    Subsidiary capability upgrading and parent-subsidiary relationship: insights from a Chinese acquisition in the UK

    Get PDF
    Purpose: - This study aims to explore capability upgrading of EMNE’s subsidiaries in developed countries and how the parent-subsidiary relationship influences such upgrading. Design/methodology/approach: - The study adopts an interdisciplinary approach to capability upgrading of EMNEs subsidiaries in developed countries. It employs a single case study to explore this under-research area. Finding: - the analysis challenges the orthodox view and suggests broad based capability upgrading has taken place in the EMNE acquired subsidiaries ranging from product, process, functional to intersectoral. In addition, the capability upgrading was contingent on the degree of subsidiary autonomy and subsidiary mandates. Originality/value: - This study represents one of the first to examine capability upgrading and parent-subsidiary relationship in the context of EMNEs’ internationalisation activities

    A Technique for Measuring Rotocraft Dynamic Stability in the 40 by 80 Foot Wind Tunnel

    Get PDF
    An on-line technique is described for the measurement of tilt rotor aircraft dynamic stability in the Ames 40- by 80-Foot Wind Tunnel. The technique is based on advanced system identification methodology and uses the instrumental variables approach. It is particulary applicable to real time estimation problems with limited amounts of noise-contaminated data. Several simulations are used to evaluate the algorithm. Estimated natural frequencies and damping ratios are compared with simulation values. The algorithm is also applied to wind tunnel data in an off-line mode. The results are used to develop preliminary guidelines for effective use of the algorithm

    Tailored plasma sprayed MCrAlY coatings for aircraft gas turbine applications

    Get PDF
    Eighteen plasma sprayed coating systems, nine based on the NiCoCrAly chemistry and nine based on the CoCrAly composition, were evaluated to identify coating systems which provide equivalent or superior life to that shown by the electron beam physical vapor deposited NiCoCrAly and CoCrAly coatings respectively. NiCoCrAly type coatings were examined on a single crystal alloy and the CoCrAly based coatings were optimized on the B1900+ Hf alloy. Cyclic burner rig oxidation and hot corrosion and tensile ductility tests used to evaluate the various coating candidates. For the single crystal alloy, a low pressure chamber plasma sprayed NiCoCrAly + Si coating exhibited a 2x oxidation life improvement at 1394 K (2050 F) over the vapor deposited NiCoCrAly material while showing equivalent tensile ductility. A silicon modified low pressure chamber plasma sprayed CoCrAly coating was found to be more durable than the baseline vapor deposited CoCrAly coating on the B1900+ Hf alloy

    Strong-coupling expansion for ultracold bosons in an optical lattice at finite temperatures in the presence of superfluidity

    Full text link
    We develop a strong-coupling (tUt \ll U) expansion technique for calculating the density profile for bosonic atoms trapped in an optical lattice with an overall harmonic trap at finite temperature and finite on site interaction in the presence of superfluid regions. Our results match well with quantum Monte Carlo simulations at finite temperature. We also show that the superfluid order parameter never vanishes in the trap due to proximity effect. Our calculations for the scaled density in the vacuum to superfluid transition agree well with the experimental data for appropriate temperatures. We present calculations for the entropy per particle as a function of temperature which can be used to calibrate the temperature in experiments. We also discuss issues connected with the demonstration of universal quantum critical scaling in the experiments.Comment: 11 pages, 9 figure

    Emission of intermediate mass fragments from hot 116^{116}Ba^* formed in low-energy 58^{58}Ni+58^{58}Ni reaction

    Full text link
    The complex fragments (or intermediate mass fragments) observed in the low-energy 58^{58}Ni+58^{58}Ni116\to ^{116}Ba^* reaction, are studied within the dynamical cluster decay model for s-wave with the use of the temperature-dependent liquid drop, Coulomb and proximity energies. The important result is that, due to the temperature effects in liquid drop energy, the explicit preference for α\alpha-like fragments is washed out, though the 12^{12}C (or the complementary 104^{104}Sn) decay is still predicted to be one of the most probable α\alpha-nucleus decay for this reaction. The production rates for non-α\alpha like intermediate mass fragments (IMFs) are now higher and the light particle production is shown to accompany the IMFs at all incident energies, without involving any statistical evaporation process in the model. The comparisons between the experimental data and the (s-wave) calculations for IMFs production cross sections are rather satisfactory and the contributions from other \ell-waves need to be added for a further improvement of these comparisons and for calculations of the total kinetic energies of fragments.Comment: 22 pages, 15 figure

    Fission and cluster decay of 76^{76}Sr nucleus in the ground-state and formed in heavy-ion reactions

    Get PDF
    Calculations for fission and cluster decay of 76Sr^{76}Sr are presented for this nucleus to be in its ground-state or formed as an excited compound system in heavy-ion reactions. The predicted mass distribution, for the dynamical collective mass transfer process assumed for fission of 76Sr^{76}Sr, is clearly asymmetric, favouring α\alpha -nuclei. Cluster decay is studied within a preformed cluster model, both for ground-state to ground-state decays and from excited compound system to the ground-state(s) or excited states(s) of the fragments.Comment: 14 pages LaTeX, 5 Figures available upon request Submitted to Phys. Rev.
    corecore