503 research outputs found

    Inelastic Diffraction and Spectroscopy of Very Weakly Bound Clusters

    Full text link
    We study the coherent inelastic diffraction of very weakly bound two body clusters from a material transmission grating. We show that internal transitions of the clusters can lead to new separate peaks in the diffraction pattern whose angular positions determine the excitation energies. Using a quantum mechanical approach to few body scattering theory we determine the relative peak intensities for the diffraction of the van der Waals dimers (D_2)_2 and H_2-D_2. Based on the results for these realistic examples we discuss the possible applications and experimental challenges of this coherent inelastic diffraction technique.Comment: 15 pages + 5 figures. J. Phys. B (in press

    On the Stereochemistry of the Cations in the Doping Block of Superconducting Copper-Oxides

    Full text link
    Metal-oxygen complexes containing Cu,- Tl-, Hg-, Bi- and Pb-cations are electronically active in superconducting copper-oxides by stabilizing single phases with enhanced TcT_c, whereas other metal-oxygen complexes deteriorate copper-oxide superconductivity. Cu, Tl, Hg, Bi, Pb in their actual oxidation states are closed shell d10d^{10} or inert s2s^2 pair ions. Their electronic configurations have a strong tendency to polarize the oxygen environment. The closed shell dd ions with low lying nd10nd9(n+1)snd^{10}\leftrightarrow nd^9(n+1)s excitations form linear complexes through dz2sd_{z^2}-s hybridization polarizing the apical oxygens. Comparatively low nd9(n+1)snd^9(n+1)s excitation energies distinguish Cu1+,3+,Tl3+,Hg2+\rm Cu^{1+,3+}, Tl^{3+}, Hg^{2+} from other closed shell d10d^{10} ions deteriorating copper-oxide superconductivity, {\it e.g.} Zn2+\rm Zn^{2+}.Comment: 5 pages, uses REVTEX. To be published in: J. Superconductivity, Proc. Int. Workshop on "Phase Separation, Electronic Inhomogenities and Related Mechanisms for High T_c Superconductors", Erice (Sicily) 9-15 July 199

    New Directions in Degenerate Dipolar Molecules via Collective Association

    Full text link
    We survey results on the creation of heteronuclear Fermi molecules by tuning a degenerate Bose-Fermi mixture into the neighborhood of an association resonance, either photoassociation or Feshbach, as well as the subsequent prospects for Cooper-like pairing between atoms and molecules. In the simplest case of only one molecular state, corresponding to either a Feshbach resonance or one-color photoassociation, the system displays Rabi oscillations and rapid adiabatic passage between a Bose-Fermi mixture of atoms and fermionic molecules. For two-color photoassociation, the system admits stimulated Raman adiabatic passage (STIRAP) from a Bose-Fermi mixture of atoms to stable Fermi molecules, even in the presence of particle-particle interactions. By tailoring the STIRAP sequence it is possible to deliberately convert only a fraction of the initial atoms, leaving a finite fraction of bosons behind to induce atom-molecule Cooper pairing via density fluctuations; unfortunately, this enhancement is insufficient to achieve a superfluid transition with present ultracold technology. We therefore propose the use of an association resonance that converts atoms and diatomic molecules (dimers) into triatomic molecules (trimers), which leads to a crossover from a Bose-Einstein condensate of trimers to atom-dimer Cooper pairs. Because heteronuclear dimers may possess a permanent electric dipole moment, this overall system presents an opportunity to investigate novel microscopic physics.Comment: 10 pages, 5 figures, 77+ references, submitted to Euro. Phys. J. topical issue on "Ultracold Polar Molecules: Formation and Collisions

    Photo- and Electroproduction of Eta Mesons

    Get PDF
    Eta photo- and electroproduction off the nucleon is investigated in an effective lagrangian approach that contains Born terms and both vector meson and nucleon resonance contributions. In particular, we review and develop the formalism for coincidence experiments with polarization degrees of freedom. The different response functions appearing in single and double polarization experiments have been studied. We will present calculations for structure functions and kinematical conditions that are most sensitive to details of the lagrangian, in particular with regard to contributions of nucleon resonances beyond the dominant S11S_{11}(1535) resonance.Comment: 24 pages RevTeX/LaTeX2.09, NFSS1, 13 figures (in separate file (tar,gzip and uue)), accepted for publication in Z. Phys.

    Self-productivity and complementarities in human development : evidence from MARS

    Full text link
    This paper investigates the role of self-productivity and home resources in capability formation from infancy to adolescence. In addition, we study the complementarities between basic cognitive, motor and noncognitive abilities and social as well as academic achievement. Our data are taken from the Mannheim Study of Children at Risk (MARS), an epidemiological cohort study following the long-term outcome of early risk factors. Results indicate that initial risk conditions cumulate and that differences in basic abilities increase during development. Self-productivity rises in the developmental process and complementarities are evident. Noncognitive abilities promote cognitive abilities and social achievement. There is remarkable stability in the distribution of the economic and socio-emotional home resources during the early life cycle. This is presumably a major reason for the evolution of inequality in human development
    corecore