130 research outputs found

    Gigaflop performance on a CRAY-2: Multitasking a computational fluid dynamics application

    Get PDF
    The methodology is described for converting a large, long-running applications code that executed on a single processor of a CRAY-2 supercomputer to a version that executed efficiently on multiple processors. Although the conversion of every application is different, a discussion of the types of modification used to achieve gigaflop performance is included to assist others in the parallelization of applications for CRAY computers, especially those that were developed for other computers. An existing application, from the discipline of computational fluid dynamics, that had utilized over 2000 hrs of CPU time on CRAY-2 during the previous year was chosen as a test case to study the effectiveness of multitasking on a CRAY-2. The nature of dominant calculations within the application indicated that a sustained computational rate of 1 billion floating-point operations per second, or 1 gigaflop, might be achieved. The code was first analyzed and modified for optimal performance on a single processor in a batch environment. After optimal performance on a single CPU was achieved, the code was modified to use multiple processors in a dedicated environment. The results of these two efforts were merged into a single code that had a sustained computational rate of over 1 gigaflop on a CRAY-2. Timings and analysis of performance are given for both single- and multiple-processor runs

    Computational and Experimental Unsteady Pressures for Alternate SLS Booster Nose Shapes

    Get PDF
    Delayed Detached Eddy Simulation (DDES) predictions of the unsteady transonic flow about a Space Launch System (SLS) configuration were made with the Fully UNstructured Three-Dimensional (FUN3D) flow solver. The computational predictions were validated against results from a 2.5% model tested in the NASA Ames 11-Foot Transonic Unitary Plan Facility. The peak C(sub p,rms) value was under-predicted for the baseline, Mach 0.9 case, but the general trends of high C(sub p,rms) levels behind the forward attach hardware, reducing as one moves away both streamwise and circumferentially, were captured. Frequency of the peak power in power spectral density estimates was consistently under-predicted. Five alternate booster nose shapes were assessed, and several were shown to reduce the surface pressure fluctuations, both as predicted by the computations and verified by the wind tunnel results

    Time Accurate Unsteady Pressure Loads Simulated for the Space Launch System at a Wind Tunnel Condition

    Get PDF
    Using the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics code, an unsteady, time-accurate flow field about a Space Launch System configuration was simulated at a transonic wind tunnel condition (Mach = 0.9). Delayed detached eddy simulation combined with Reynolds Averaged Naiver-Stokes and a Spallart-Almaras turbulence model were employed for the simulation. Second order accurate time evolution scheme was used to simulate the flow field, with a minimum of 0.2 seconds of simulated time to as much as 1.4 seconds. Data was collected at 480 pressure taps at locations, 139 of which matched a 3% wind tunnel model, tested in the Transonic Dynamic Tunnel (TDT) facility at NASA Langley Research Center. Comparisons between computation and experiment showed agreement within 5% in terms of location for peak RMS levels, and 20% for frequency and magnitude of power spectral densities. Grid resolution and time step sensitivity studies were performed to identify methods for improved accuracy comparisons to wind tunnel data. With limited computational resources, accurate trends for reduced vibratory loads on the vehicle were observed. Exploratory methods such as determining minimized computed errors based on CFL number and sub-iterations, as well as evaluating frequency content of the unsteady pressures and evaluation of oscillatory shock structures were used in this study to enhance computational efficiency and solution accuracy. These techniques enabled development of a set of best practices, for the evaluation of future flight vehicle designs in terms of vibratory loads

    Time-Accurate Unsteady Pressure Loads Simulated for the Space Launch System at Wind Tunnel Conditions

    Get PDF
    A transonic flow field about a Space Launch System (SLS) configuration was simulated with the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics (CFD) code at wind tunnel conditions. Unsteady, time-accurate computations were performed using second-order Delayed Detached Eddy Simulation (DDES) for up to 1.5 physical seconds. The surface pressure time history was collected at 619 locations, 169 of which matched locations on a 2.5 percent wind tunnel model that was tested in the 11 ft. x 11 ft. test section of the NASA Ames Research Center's Unitary Plan Wind Tunnel. Comparisons between computation and experiment showed that the peak surface pressure RMS level occurs behind the forward attach hardware, and good agreement for frequency and power was obtained in this region. Computational domain, grid resolution, and time step sensitivity studies were performed. These included an investigation of pseudo-time sub-iteration convergence. Using these sensitivity studies and experimental data comparisons, a set of best practices to date have been established for FUN3D simulations for SLS launch vehicle analysis. To the author's knowledge, this is the first time DDES has been used in a systematic approach and establish simulation time needed, to analyze unsteady pressure loads on a space launch vehicle such as the NASA SLS

    The Space-Time Conservative Schemes for Large-Scale, Time-Accurate Flow Simulations with Tetrahedral Meshes

    Get PDF
    Despite decades of development of unstructured mesh methods, high-fidelity time-accurate simulations are still predominantly carried out on structured, or unstructured hexahedral meshes by using high-order finite-difference, weighted essentially non-oscillatory (WENO), or hybrid schemes formed by their combinations. In this work, the space-time conservation element solution element (CESE) method is used to simulate several flow problems including supersonic jet/shock interaction and its impact on launch vehicle acoustics, and direct numerical simulations of turbulent flows using tetrahedral meshes. This paper provides a status report for the continuing development of the space-time conservation element solution element (CESE) numerical and software framework under the Revolutionary Computational Aerosciences (RCA) project. Solution accuracy and large-scale parallel performance of the numerical framework is assessed with the goal of providing a viable paradigm for future high-fidelity flow physics simulations

    Separation of Test-Free Propositional Dynamic Logics over Context-Free Languages

    Full text link
    For a class L of languages let PDL[L] be an extension of Propositional Dynamic Logic which allows programs to be in a language of L rather than just to be regular. If L contains a non-regular language, PDL[L] can express non-regular properties, in contrast to pure PDL. For regular, visibly pushdown and deterministic context-free languages, the separation of the respective PDLs can be proven by automata-theoretic techniques. However, these techniques introduce non-determinism on the automata side. As non-determinism is also the difference between DCFL and CFL, these techniques seem to be inappropriate to separate PDL[DCFL] from PDL[CFL]. Nevertheless, this separation is shown but for programs without test operators.Comment: In Proceedings GandALF 2011, arXiv:1106.081

    Intermittency analysis of high-lift airfoil with slat cove fillers

    Get PDF
    Experimental measurements were carried out to assess the aeroacoustic characteristics of 30P30N airfoil fitted with two different types of slat cove fillers at the aeroacoustic facility at the University of Bristol. The results are presented for the angle of attack α = 18◦ at a free-stream velocity of U∞ = 30 m/s which corresponds to a chord-based Reynolds number of Rec = 7 × 10◦ . Simultaneous measurements of the unsteady surface pressure were made at several locations in the vicinity of slat cove and at the far-field location to gain a deeper understanding of the slat noise generation mechanism. The results are analyzed using a higher-order statistical approach to determine the nature of the broadband hump seen at low-frequency for the 30P30N high-lift airfoil observed in recent studies and also to further understand the tone generation mechanism within the slat cavity. A series of cross-correlation and coherence of the unsteady pressure measurements are carried out to identify and isolate the low-frequency hump. Wavelet analysis is performed to investigate the nature of the slat-wing resonant intermittent events in both time and frequency domains. The far-field noise measurement results showed that significant noise reduction can be achieved by the use of slat cove fillers. A series of far-field and near-field correlation are also presented to show the propagated noise from the slat.5s
    corecore