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Abstract

This paper describes the methodology for converting a large, long-

running applications code that executed on a single processor of a

CRA Y-2 supercomputer to a version that executed efficiently on multi-
ple processors. Although the conversion of every application is differ-

ent, a discussion of the types of modifications used to achieve gigaftop

performance is included to assist others in the parallelization of appli-

cations for CRAY computers, especially those that were developed for

other computers. An existing application, from the discipline of com-

putational fluid dynamics, that had utilized over 2000 hours of CPU

(central processing unit) time on a CRAY-2 during the previous year

was chosen as a test case to study the effectiveness of multitasking on a

CRA Y-2. The nature of the dominant calculations within the applica-

tion indicated that a sustained computational rate of I billion floating-

point operations per second, or 1 gigaflop, might be achievable. The

code was first analyzed and modified for optimal performance on a sin-

gle processor in a batch environment. After optimal performance on a

single CPU was achieved, the code was modified to use multiple proces-

sors in a dedicated environment. The results of these two efforts were

merged into a single code that had a sustained computational rate of

over 1 gigaflop on a CRAY-2. Timings and analysis of performance

are given for both single- and multiple-processor runs.

1. Introduction

This paper provides a methodology for other re-

searchers who wish to use parallel processing on

CRAY computers. Some of the transformations that

were made were obvious, but performance improve-

meats often exceeded expectations. The code chosen

for this effort was a large, long-running computa-

tional fluid dynamics application. A complete ex-
ecution of this application ran for over 2000 hours

on a single processor of a CRAY-2 supercomputer.
Most of the computational time for this application

was contained within matrix multiplication and fast

Fourier transform (FFT) subroutines. The fact that

these routines can be run in parallel, coupled with

the large, long-running nature of the job, made this
code an obvious candidate for parallel execution.

The result of the conversion was a code that exe-

cuted at 1.01 billion floating-point operations per sec-

ond (or 1.01 gigaflops) on a four-processor CRAY-2

with static random-access memory (SRAM) at Lang-

ley Research Center. Additionally, the code executed

at 1.59 gigaflops on an eight-processor CRAY Y-MP

at the Numerical Aerodynamic Simulation (NAS)

facility at Ames Research Center. The code was

submitted to Cray Research, Inc. (CRI) as an en-

try in the Gigaflop Performance Award Program,

which recognized complete applications, from initial-

ization through finM output, that had a sustained

performance of over 1 gigaflop. This application was

the only application recognized that achieved the re-

quired performance on a CRAY-2.

The code models Taylor-Couette flow, which is

induced by rotating one of two concentric cylinders

with respect to the other. This type of flow has been

studied for over a century as a model of the insta-

bility of curved and rotating shear flows. A critical
rotational speed of the inner cylinder with respect to

the outer cylinder causes regular-sized axisymmetric
annular vortices to fill the entire gap between the

cylinders. These Taylor vortices lose axial symmetry

in regular azimuthal waves at higher speeds. Eventu-

ally, they show contained bursts of turbulence. The
turbulence and chaotic nature of this flow are the pri-

mary reasons for the lengthy execution of the appli-
cation. An existing production code (NSCY3D) that

was developed at Langley Research Center (ref. 1)

simulates these events in a three.dimensional, time-

dependent flow; this code was the application chosen

for this attempt at parallelization.

Section 2 of this report is a brief discussion of

multitasking on CRAY computers. Section 3 de-

scribes the operating environment and the method-

ology used for analysis and verification. Sections 4

and 5 describe the single.processor and multiple-

processor optimizations of the code. Timing results

are given in section 6, and section 7 summarizes the
work.



AppendixesA andB contain coding details for some
of the parallelization effort.

2. Multitasking on CRAY Computers

Cray Research supports three methods of multi-

tasking: macrotasking, microtasking, and autotask-

ing (refs. 2 and 3). Macrotasking is done with calls

to subroutines in a multitasking library, while micro-

tasking and autotasking are both directive driven.

The original version of multitasking, which is

Cray Research's name for the different methods of

invoking parallel execution, was called macrotask-

ing. As the name implies, macrotasking relies on

relatively large-grain parallelization, generally at the
subroutine level. An initial evaluation of macro-

tasking revealed both strengths and weaknesses. To

spawn parallel tasks, the programmer must call
CRAY macrotasking library subroutines. The anal-

ysis of data must be done on a subroutine basis to

determine which variables are shared by all tasks and

which are private to each individual task. This te-

dious modification leaves the code in a nonportable

form, except to other CRAY multiple CPU (central

processing unit) systems. On the positive s!de, pro-
grams that exhibit large-grain parallelism have very

little overhead added to the total CPU time, and

may, in a dedicated environment, have an elapsed

time that is very close to the total CPU time divided

by the number of available processors.

Task management of macrotasking is performed

by the libraD_ scheduler, which gets information re-
garding synchronization from the subroutine calls

(ref. 3). The library scheduler attaches tasks to log-
ical CPU's or processes. The job scheduler then

attaches the logical CPU's to physically available

CPU's. Depending on the system load, parallel tasks

may run concurrently. Macrotasking requires sub-

routines to manipulate tasks, to control critical re-

gions, and to control events. Not all codes can benefit

from using this method of multitasking. Performance

may suffer when the true task granularity is small,

when the number of available processors does not

match the number of tasks that have been spawned,
or when parallel task sizes are not balanced across

processors.

Some work has been done (ref. 4) to provide a

portable parallel programming language, FORCE,

for a group of shared-memory multiple-instruction,

multiple-data (MIMD) multiprocessors. This lan-

guage uses the UNIX sed editor and a set of script

files to replace FORCE parallel constructs embed-

ded within a FORTRAN code with the appropriate

machine-dependent multitasking subroutines. The
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programmer can then concentrate on the parallel as-

pects of the program without having to learn how to

program in parallel on each machinc. This tool has

been useful to some researchers at Langley Research

Center. (See ref. 5.)

The FORCE program became available at Lang-

ley at about the same time that Cray Research re-

leased microtasking. Microtasking was chosen over

both FORCE and macrotasking for several reasons.
The overhead for microtasking is lower than for

macrotasking. On CRAY computers, FORCE uses

macrotasking subroutines to control the parallelism.

Microtasking a code does not automatically result
in significant changes to the code. Compiler direc-

tives, which appear as comments to other machine

compilers, are inserted to define the parallelism. Mi-

crotasking can efficiently parallelize tasks with small

granularity (e.g., outermost DO loops). Since the
programmer can look for parMlelism below the sub-

routine level, analyzing data dependencies becomes

much easier. In a FORCE program, parallelism must

be expressed from the very beginning, not just in
selected subroutines. In addition, microtasked pro-

grams behave much better than maerotasked pro-
grams in a batch environment.

The overhead for microtasking is much smaller

than that for macrotasking, because microtasking

does not require extensive task management. The

microtasking preprocessor premult converts a user

code into three routines for each original routine

that is microtasked. The master copy, an assembly
language routine, is called by the same name as

the original. Its purpose is to decide whether the

single-processor version or the multiprocessor version
of the subroutine is to be called. This decision

prevents any attempt to "nest" microtasking at run

time. Parallelism is defined by control structures

that designate segments of code that can be done by

multiple CPU's in any order. The control structures

are defined by the families of compiler directives
CMIC$ DO GLOBAL and CMIC$ PROCESS. All

work must be completed in a control structure before

continuing, but this does not imply a barrier form of
synchronization, where all processes must reach the

control structure before any of them may proceed

further. In other words, if the control structure work

is done by a subset of the total number of processes,

those active processes may proceed without waiting
for the others.

Cray Research's latest multitasking product is

called autotasking. Like microtasking, it is directive

driven. The intention of the cf77 FORTRAN compil-
ing system is to analyze all data and insert autotask-

ing directives automatically. Autotasking, however,



wasin anearlystageof developmentduringthepe-
riod that thisworkwasperformed.Therefore,it was
not utilizedforthis study.

3. Environment, Analysis, and
Verification

Duringtheearlyphaseofthisstudy,theCRAY-2
at Langleywas running UNICOS4.0.9with ver-
sion 3.0of the CrayFORTRANcompiler(eft77).
The CRAYY-MP at NAS was running a Beta
UNICOS5.0with version3.1of the eft77 compiler.
Access to a dedicated machine was limited at both lo-

cations, so the majority of the development work was
done in a heavily loaded nondedicated environment.

The first task was to analyze the code to deter-

mine which subroutines should receive the primary
optimization effort and how to determine the effi-

ciency of any optimizations that were attempted.

Next, the code had to be optimized both for single-
and multiple-processor executions. These efforts are

described in detail in sections 4 and 5. Finally, it

was necessary to verify that the microtasking had
been implemented correctly.

The CRAY utility flowtrace provides an easy
means for profiling a program without much over-

head. As suspected, the most computationally in-

tensive subroutines were matrix multiplications and

FFT's. The matrix multiplications were performed

by using the CRAY library subroutines TRANS and

MXMA. The FFT's included in the original applica-

tion code were FORTRAN implementations of Tem-

perton algorithms (refs. 6 and 7). Although a func-
tionally equivalent FFT, called RFFTMLT, had been

available in the CRAY scientific library, it offered

no improvement in performance. Subsequently, the
Temperton algorithms were coded in CRAY assem-

bly language (CAL) by Cray Research, who then
replaced the previous version of RFFTMLT in the

scientific library with the more efficient CAL imple-
mentation. The user interface to the revised FFT's

remained compatible.

In a heavily loaded batch environment, the ex-

ecution time of the single-processor version of the

code varied by only 3 to 5 percent for identical runs

on Langley's CRAY-2 and was essentially the same

as for a dedicated machine. This was significantly

better than the 20- to 30-percent uncertainty be-

tween execution times exhibited by the CRAY-2 at
NAS. The primary difference between the two ma-

chines is the memory. The Langley CRAY-2 has

static random-access memory (SRAM) with a clock

cycle of 45 nsec, while the CRAY-2 at NAS has dy-

namic random-access memory (DRAM) with a clock

cycle of 80 nsec and requires refreshing at each cycle.
Thus, the SRAM CRAY-2 does not suffer as much

adverse effect from memory conflicts between com-

peting processes as the DRAM CRAY-2. Since there

was a relatively small uncertainty in batch execution

time between runs on the Langley CRAY-2, changes

with a significant impact on the execution time (for

the single-processor version of the code) in either di-
rection should be observable, even on a nondedicated
machine.

Since one goal was to achieve a computational

rate of over 1 gigaflop, simply measuring the CPU

utilization time of the program was obviously not

going to give an accurate picture of the efficiency

of microtasking. Another uncertainty was whether

any of the optimizations would have a major impact

on the number of floating-point operations per iter-

ation. The CRAY-2 does not have any utility that
is analogous to the hardware performance monitor

(hpm) .available on the CRAY Y-MP. For very little

overhead, hpm produces a report that gives the to-

tal number of floating-point additions (subtractions),
floating-point multiplications, and reciprocals.

The code was monitored frequently during the

optimization process by using hpm on the NAS

CRAY Y-MP to see if the number of operations

had changed significantly through any of the opti-

mizations. It was possible to determine how many

floating-point operations were required for program

initialization, for program shutdown, and per iter-

ation. This information allowed the computation

of the code's gigaflop performance, internal to pro-
gram execution, in either single-processor mode us-

ing elapsed CPU time or multiple-processor mode in

a dedicated environment using elapsed wall time.

Errors in a code being run in parallel are, in

general, nondeterministic. To minimize the chance

of introducing errors, modifications were made in

very small steps. The standard formatted output

file detected any gross errors. However, to find sub-

tle errors, a check program was required. This check

program compared the binary restart file from the

original unmodified code with the binary restart file
from each successive modification execution. Since

there was no reason to expect exact agreement be-
tween successive runs, a relative error test was used

to compare the two binary files. The only differences

between runs was round-off error caused by a slightly
different ordering of numerical calculations.

4. Single-Processor Optimization

The most important maxim in parallelizing a code
on a vector processor is to not forsake vectorization



for parallctization,sincethebiggestrelativeperfor-
manceimprovementoverscalarcodearisesfromvec-
torization.Thus,thefirst thrustwasto examinethe
executionof thesingle-processorversionof tile code.
A testcaseof25iterationswaschosen,becauseit was
sizedby executiontime to run interactivelyrather
thanin batchmode.Thecodethat wasoptimized,
NSCY3D,wasdevelopedat LangleyontheVPS-32,
a modifiedCYBER 205. When the code was first de-

veloped, PARAMETER statements had not yet been

added to the CYBER 200 FORTRAN language. In

addition, the VPS-32 architecture favored long con-

tiguous vectors (up to 65 535 elements), so many of
the DO loops wcrc collapsed from two or three lev-
els clown to one. When the code was translated to

the CRAY-2, the grid size was also increased, so that

many of these collapsed loops had iteration lengths

of 137 280. These characteristics had a major impact
on the optimization effort.

Without any modifications, NSCY3D executed
at 220 million floating-point operations per second

(megaflops) on tile CRAY-2. On the CRAY Y-MP,

it executed at 202 megaflops. Virtually every other

program that was tested on tile two machines ran be-
tween 1.5 and 2.5 times faster on the CRAY Y-MP.

Using the flowtrace utility, this discrepancy was
found in the scientific library routine MXMA, which

was much more efficient on the CRAY-2, because of

the CRAY-2's faster cycle time and the use of its fast

local memory for storing intermediate results. The

MXMA assembly code is written so that memory ac-

cesses to local and main memory and calculations in
the addition and inultiplication functional units can

all occur simultaneously. Tile information from flow-

trace confirmed that most of the program CPU cycles

were spent in the FFT's and MXMA.

The program was also compiled with the loop-

mark compiler option (-era) turned on. In addition

to marking DO loops so they can be easily found in a

listing, the type of loop is also indicated. Loops may

bc scalar, vector, or short vector (tess than 64 ele-

ments). The compiler identified virtually no short

vector loops, even though the array dimensions were
33, 65, and 64 elements. When the PARAMETER

statement became available, it had been used to di-

mension the arrays but not as limits on any DO loops.

Since there was no information to tell the compiler

how long each loop was, eft77 was generating code

to stripmine each DO loop. Since the vector regis-

ters on the CRAY machines hold only 64 elements

each, vector computations must be done in chunks

of 64 elements, which results in the compiler gener-

ating another loop (stripmining) around the vector

loop for 64 elements. This loop is executed until all

the elements in the original, longer vector have bccn

processed.

The parameters NDR, NDZ, and NDY corre-

sponded to the dimensions 33, 65, and 64 e!cments ,
respectively. The ranges on DO loops used the vari-

i
ables NR, NZ, and NY. Conceptually, changing the l
variables to parameters was a trivial modification to

the code. However, making all the changes at once
led to an editing error that gave incorrect results and i

forced a restart for the modification. Thus, the les-

son of keeping modifications simple was reinforced.

Making the changes in three stages was successflfl
and resulted in a surprising improvement of almost =

10 percent to a rate of 240 megaflops. In addition to

improving the performance of the short vector loops,

which made up only a small percentage of the code,

using parameters improved the performance of other

vector loops as well. This improvement resulted be-

cause the compiler had more information at compile

time to precompute many of the offsets within all
the DO loops and because of more efficient strip-

mining. An improvement in the range of the un-

certainty of the timings was expected because of the

use of parameters, so this enhanced performance was

a surprise.

The information from ftowtrace had already shown
that most of the CPU time was being spent in the

subroutines RMULT, ZMULT, and ZMULTH. Each

of these routines was short and consisted only of a call

to the scientific library routine MXMA and, in the

case of RMULT, calls to TRANS, which computes a

matrix transpose. Subroutine TRANS takes a signif-

icant amount of CPU time but has no floating-point
operations. In this code, TRANS was used with

to compute Q = (ABT) T. This computa-MXMA

tion was accomplished by calling TRANS to compute
C = B T, followed by a call to MXMA to compute

W = AC, and, finally, another call to TRANS to
compute Q = W T. However, since an equivalent for-

mulation is Q = BA T, only one transpose is neces- -

sary. Furthermore, MXMA has the capability to use

the transpose of A as one of the source matrices, with

the appropriate identification of stride between adja-

cent row and column elements. Consequently, both _
calls to TRANS within RMULT were eliminated. -

The code, as originally developed for the VPS-32, _

had required the call to the transpose routine because
the VPS-32 needed vectors that had a unit stride

through memory to be efficient. Therefore, since ar- -

ray storage is columnwise in FORTRAN, the trans- __.

pose was necessary to make row operations into unit

stride vector operations. Since RMULT, ZMULT,

and ZMULTH now only called MXMA, these three

4



subroutineswereeliminated,andtile callsto MXMA
wereplacedin-line.With theoverheadofsubroutine
callsandthetransposeremovcd,NSCY3Dshoweda
speedupofabout5percent,comparedwith theorig-
inal version,andnowran at 250megaflops.This
performanceimprovementwasverifiedwith arun in
dedicatedtime.

Severalmorechangesweremadeto NSCY3D,
noneof whichshowedthe improvementsof tlle first
changes.Eventhoughthesechangeswereminorfor
this code,exceptfor the fact that without thcm a
rateof 1gigaflopwouldhavebeenunattainable,they
aredescribedbrieflyto assistotherswith codesof
differentdesigns.

Thebinaryinput-output(I/O) in NSCY3Dwas
donewithin a DO loop and with an implied DO
structure.Theloopmark compiler option gave some-
what misleading information in this case. It indi-

cated that the I/O had been vectorized, which might

cause a user to think that the I/O was being done
as efficiently as possible. The I/O was restructured

to write an entire array without any DO structure.

The I/O time was reduced by over 90 percent, which

translated into an overall performance improvement
of 4 to 5 megaflops.

There is no divide flmctional unit in the CRAY

architectures. Division is done through reciprocal

approximations, which makes it the most expen-
sive floating-point operation. Within the subroutines

EQ1, EQ2, and EQ3, there were repeated reciprocal

calculations that used the invariant array R to com-

pute R inverse and the inverse of R squared. Thesc
calculations were moved to the main program, were
done once, and were stored in a COMMON block.

Several DO loops in the main program and in subrou-

tine SETUP were interchanged, which transformed

an inner-product calculation to an outer-product cal-
culation. The subroutine HCYLSLD was called at

two places in NSCY3D. One of the calls was from

within a DO loop. Another version of HCYLSLD

was created, for which the DO loop was pulled into
the routine itself. The net result of all these minor

changes was an increase of about 10 megaflops.

The FFT's calculated by the FORTRAN subrou-
tine FFT991 and the subroutines that it called were

identical to the transforms calculated by the scientific
library routine RFFTMLT. All calls to FFT991 were

replaced by calls to RFFTMLT. Additionally, all the

extra FORTRAN coded routines called by FFT991

that had equivalent optimized CAL versions in the
scientific library were removed. After this final modi-

fication, the code executed at 272 megaflops in a ded-

-'cated environment on the CRAY-2. The hpm utility

indicated that the only significant change in oper-

ation count was for floating-point reciprocals. Be-
fore all these optimizations, there were about 120 000

reciprocals per iteration, and afterward there were

about 20000 per iteration. However, since the to-

tal operation count was about 1.32 billion per iter-

ation, the reduction was only significant in the ex-
ecution time. Also, the code then executed at 223

megaflops on the CRAY Y-MP. Achieving a gigaflop
on the eight-processor CRAY Y-MP seemed certain,

but it seemed unlikely to exceed about 0.9 gigaflop

on the four-processor CRAY-2.

Not one of tile changes made to the single-

processor version was conceptually very complicated.
For this code, the most obvious optimizations had

ttle largest impact on performance. They have been

described to emphasize that many older codes that
were efficient when written for other versions of FOR-
TRAN and different architectures could benefit from

some fine-tuning for CRAY computers. It was also
interesting to note the magnitude of performance im-

provement that resulted. Since the goal was to ob-

tain the absolute best single-processor performance,
the effort expended far exceeded the effort the typical

programmer would need or want to expend. A single-
processor rate in the mid to upper 260-megaflop

range could have bccn achieved with far less effort;

however, the gigaflop goal would not have been pos-

sible. From a purely practical standpoint, running

at 1.01 gigaflops is little different from running at

900 megaflops. It is not recommended that anyone
try to squeeze as much performance as was done for

this study, since the performance payoff for effort ex-

pended drops dramatically near the end of the opti-
mization effort.

5. Microtasking the Code

The code that was first analyzed for microtasking
did not have any of the single-processor optimiza-

tions discussed in section 4. As the other changes
to the single-processor version were tested and ver-

ified, they were added to the version being micro-
tasked. The single-processor version that was first

completely microtasked and timed had the DO loop
ranges specified by parameters, the calls to TRANS

eliminated, the calls to MXMA in-lined, the binary
I/O reformulated, and the inner products replaced by

outer products. This section details much of the mi-

crotasking effort to emphasize the relative ease with

which much of the code was microtasked with only a
few compiler directives. Some examples are given to

illustrate the technique that was used to microtask
subroutine calls when the source code was not avail-

able for manual insertion of microtasking directives.

5



5.1. Data Analysis

The flow traceanalysiswasusedto determine
whichroutineswerethemosttime-consuming.These
routinesweremicrotaskedfirst. Afterselectingasub-
routineto microtask,the datawereanalyzedto de-
termineif variablesweresharedor private.Shared
variablesaredefinedby onememorylocation;there-
fore, an updateto a sharedvariableby oneCPU
is knownto all other CPU's. On the otherhand,
eachCPU has a separate storage location for private
variables. Variables that appear in the argument list,

COMMON blocks, DATA, or SAVE statements must

be treated as shared: All remaining variables must be

treated as private. In general, shared data are mod-

ified within microtasking control structures and pri-
vate data are modified outside of control structures.

In some subroutines, several arrays used as work ar-

rays were removed from the subroutine argument list.

By declaring the arrays as Iocal variables, the ar-

rays were converted from shared to private. To ex-
ploit the parallelism in these subroutines, all CPU's

needed separate copies of the work arrays. The max-

imum amount of space required by each CPU for tile

work arrays was approximately 2 * NDZ * NDZ (i.e.,

<9000 words).

The original main program had several sections

of code that were good candidates for microtasking.

Since microtasking is not allowed in the main pro-

gram, two subroutines were created to hold these
sections so that their parallelism could be exploited.

5.2. Microtasking Directives

The following microtasking directives were used

in this application:

CMIC$ DO GLOBAL

CMIC$ DO GLOBAL FOR NCPU

CMIC$ PROCESS/CMIC$

ALSO PROCESS/CMIC$ END PROCESS

CMIC$ CONTINUE

These directives alone defined the processor flow

through each subroutine.

Since microtasking is usually invoked at the DO

loop level, probably the most frequently used micro-

tasking compiler directive is CMIC$ DO GLOBAL.

This control-structure directive is placed before an

outer DO loop whose iterations do not depend on

the results of any other iteration. Each iteration of

the loop is executed by CPU's as they become avail-
able. For example, if the system is heavily loaded,

one or two CPU's may do most of the work.

As mentioned previously, one of the characteris-

tics of this code is that a number of nested DO loops
had been collapsed into single loops. A form often
used was

DO 100 IJK = 1, NDR * NDZ * NDY

This loop can be executed in parallel on multiple

CPU's by placing the following directive directly

before the loop:

CMIC$ DO GLOBAL FOR NCPU

where NCPU is the number of parallel tasks. NCPU
was set to 4 on the CRAY-2 and to 8 on the

CRAY Y-MP. This directive divides the total num-

ber of iterations into NCPU parts, each of which can

be executed by a separate CPU. The variable NCPU
was declared in the statement

PARAMETER (NCPU = 4)

which was placed in the main program and in each

microtasked subroutine. Single loops may be effi-

ciently multitasked if the number of iterations is suf-

ficiently large. Multitasking loops with small num-

bers of iterations and a small amount of computation

may lead to negligible speedups.

The CMIC$ PROCESS and CMIC$ END PRO-

CESS directives define a control structure and were

used together to enclose segments of code which wcrc

to be done by one processor. The trio CMIC$ PRO-

CESS, CMIC$ ALSO PROCESS, and CMIC$ END
PROCESS were used to define two sections of code

that were to be executed in parallel.

Finally, the CMIC$ CONTINUE directive was

placed before calls to subroutines that contained

microtasking directives when the calling subroutine
was itself a microtasked subroutine. Without the

directive, the preprocessor would place a call to the

single-processor version of the routine, rather than to

the multiple-processor version.

5.3. Exploiting Parallelism

The parallelism to be exploited through micro-

tasking was present in several different forms. The

most significant forms are discussed below. Data

structure is always a key factor in exploiting paral-

lelism. Most of the arrays involved in the description

in this section are of the form (I1, I2, NDY), where
I1 and I2 are some combination of NDZ and NDR.

=-

i
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NDZ

NDR

or
NDR

A(NDZ, NDR)* B(NDR, NDR, K)
K = 1, NDY

(a) Single processor, Kth matrix multiply.

NDZ
EA-_ NDREB 1 I B2 ] ........ IBNDY-_ or

NDR i i
NDR * NDY

A(NDZ, NDR) * B(NDR, NDR*NDY)

(b) Optimized for a single processor.

NDZ

NDR
I,___._J

NDR * NDY/4

A(NDZ, NDR)* B(NDR, NDR*NDY/4, 4)

(c) Multiprocessor version (NCPU = 4).

Figure 1. Equivalent methods to formulate matrix multiplications.

5.3.1. Nested Loops

Many of the DO loops were of the form

Although it would have been possible to return to the

original triply nested form, it was easier and more
efficient to insert

DO K = 1, NDY

BODY (I, J, K)

The body of code within the K loop typically con-

sisted of a FORTRAN source that was a doubly

nested loop over the first two dimensions. In many

cases, it included a call to MXMA to multiply two
matrices together prior to entering the double loop.

One or both of the matrices were typically just the

Kth plane of a three-dimensional array. Conse-

quently, placing

CMIC$ DO GLOBAL

prior to the DO K loop identified NDY-independent

(and usually large-grained) vectorized tasks to be
done in parallel.

5. 3.2. Single Long Loop

The original code was optimized for the CYBER 205

architecture in many places by collapsing triply
nested loops into a single, long loop as follows:

DO IJK = 1, NDR * NDZ * NDY

BODY (IJK)

CMIC$ DO GLOBAL FOR NCPU

before the DO IJK loop. Parallelization takes place

through an automated partitioning of the loop length

into NCPU parts. Vectors are still long at a nominal

size of 137 280/NCPU for the problem size of interest.

5.3.3. Single Calls to Scientific Library
Subroutines

Since most of the execution time was spent in the

matrix multiplication andfast Fourier transform sub-

routines, it was imperative to achieve top efficiency
in these two areas. In some of the calls to MXMA

and in the calls to RFFTMLT, there was but a single
call to the subroutine. Hence, to define independent,

parallelizable tasks, it was necessary to partition the

calculation and the arrays involved into independent

parts.

5.3.3.1. Single MXMA calls. One of the calls

to MXMA was the result of previous optimization,

which enabled multiple matrix multiplications to be

performed with a single call to MXMA. Here, as il-

lustrated in figure 1, the array B(NDR, NDR, NDY)

is viewed as a single matrix B(NDR, NDR * NDY).
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ND/NDR

NDZ I LOT

ill'A(1, I, I)

A(NDZ, NDR, NDY)

Input: arrayA(1, 1, 1)

LOT = NDZ * NDR
N = NDY
INC = NDZ* NDR
JUMP = i

(a) Single processor.

NDZ * NDR/4

NDY /

/,,,
I
I

--J -Jl_
I
I
I

I I I

/

/

A'(NDZ*NDR/4, 4 NDY)

Input: array A'(1, K, 1), K = 1,4

LOT = NDZ * NDR/4
N = NDY
INC = NDZ* NDR
JUMP = 1

A'(1, K, 1), K = 1,4
(b) Multiple processors (NCPU = 4).

Figure 2. Fast Fourier transform data structure.

This view is mathematically correct because the left
matrix in each of tile matrix multiplications is the

same. The single-processor efficiency is increased be-
cause the MFLOP rate for MXMA increases as the
number of columns of the second matrix increases.

To parallelize this subroutine, another step is nec-
essary. Consider that B is also equivalent to an ar-
ray B(NDR, NDR * NDY/NCPU, NCPU). Viewed
this way, the problem is partitioned into NCPU-
independent matrix multiplications. An outer DO
loop from 1 to NCPU with pointers to the appro-
priate columns in B can now be parallelized with a
CMIC$ DO GLOBAL directive.

5.3.3.2. FFT calculations. As previously men-

tioned, the original FFT calculations were calcu-
latcd with the FORTRAN subroutine FFT991 and
the subroutines it called. The FORTRAN FFT's

were replaced with the functionally identical scien-
tific library subroutine RFFTMLT, which resulted
in superior performance. Subroutines FFT991 and

RFFTMLT have identical calling sequences. Thc ar-
gument list contains the name of the array to be
transformed, the length of each t!iansform (N), the
increment in storage between successive elements of
the vector to be transformed (INC), the increment in

storage between the starting elements of each data
vector (JUMP), and the number of independent vec-
tors to be transformed (LOT).

The initial parallelization effort was to microtask
the FFT991 DO loops at the source level by dividing

the loops over the LOT transforms into NCPU parts.
This approach was not very successful, because most
of the loops were innermost loops. Therefore, thcrc
was a lot of computation in outer loops that was not
parallclized. Efforts to parallelize at the outer loops
were not successful bccause of load-balancing issucs.

The parallelization of RFFTMLT required an
alternate approach because the source code was
unavailable. It was again necessary to conceptu-
ally view the computation and the data base as



different, but independent, NCPU problems. Unlike

the MXMA partition where the data array was sim-

ply partitioned into smaller, but contiguous, NCPU
segments, the data structure for the FFT is more

complex. The data associated with each of the

NCPU tasks are not contignlous, even though they

were for the single-processor version. Fortunately,

the RFFTMLT software was written with enough
flexibility to permit the type of data structure

needed. Figure 2 shows the data structure for both

the single- and multiple-processor approaches.

For both the MXMA and RFFTMLT partitioning
described in the preceding paragraph, the discussion

is presented as if the array sizes were such that NCPU

divided the dimensions exactly. Since that could

not be assumed, the actual code leaves the arrays

in their original form and computes pointers to tile

appropriate portions of the arrays. This is done in

the initialization stage of the program.

6. Timing and Performance

This section presents results for several versions of

the code. It was important to microtask as much as

possible, since any nonparallel code has a strong im-

pact on the speedup. For a five-iteration run, 97 per-

cent to 98 percent of the execution time is spent in

microtasked subroutines. Amdahl's Law predicts a
theoretical maximum speedup of 3.67 to 3.77 for this

percentage of parallel code. However, as the num-

ber of time steps is increased, the initialization code

required becomes less significant in the overall exe-

cution time; as a result, the speedup should increase.

Typically, 1000 time steps arc required for this ap-
plications code.

6.1. Dedicated Environment

Tables 1 and 2 present results from two versions
of the code that were executed in a dedicated en-

vironment for 50 iterations. The difference between

the codes is in the implementation of the fast Fourier
transforms. Table 1 contains the results for when the
FORTRAN FFT's are used.

Table 1. CRAY-2 Dedicated Results for 50 Iterations
With FORTRAN Subroutine FFT991

1 CPU

Elapsed seconds 256.0
CPU seconds

4 CPU's

71.9

279.7255.3

MFLOPS 258.0 921.4

r

jw

The speedup for this code was approximately 3.6.

The CPU overhead introduced by microtasking in
this case is about 9.6 percent of the CPU time for

the sequential code. The microtasking overhead is
defined as the difference between the total CPU time

for the microtasked code and the single-processor

code divided by the total CPU time for the single-
processor code. Overhead may result for several rea-

sons, including overhead from the calls to the mi-

crotasking subroutines, the synchronization of tasks,

load imbalance, memory contention, and time spent
in sequential portions of the code where proces-
sors were connected but not used. Table 2 shows

the results for when the scientific library subroutine

RFFTMLT (appendix B) is used.

Table 2. CRAY-2 Dedicated Results for 50 Iterations

With Scientific Library Subroutine RFFTMI.T

Elapsed seconds

1 CPU

244.6

4 CPU's

66.2
CPU seconds 243.4 257.5

MFLOPS 270.1 999.6

In this case, the speedup is 3.69, and the over-

head due to microtasking is approximately 5.8 per-
cent. The microtasking overhead decreased because

of an increase in task granularity and because of

more evenly balanced tasks by parallelizing on the
subroutinc calls. This decrease in overhead was re-

sponsible for the greater than expected increase in
the MFLOPS from subroutinc FFT991 to subroutine
RFFTMLT.

Before making the final dedicated timings, a few
additional changes were made. All DO GLOBAL

directives, which preceded the outermost DO loops,
were replaced by DO GLOBAL FOR NCPU direc-

tives. This change caused the total number of loop

iterations to be divided into NCPU groups, one group
for each processor; thus, the iterations arc not passed

out one at a time. Several loops, which were previ-
ously placed within the PROCESS and END PRO-

CESS directives, were rewritten so that the iterations

could be executed in parallel. In previous versions,
they were left unmodified because they looked like

they were more trouble than they were worth. Fi-
nally, the DO loop around the subroutine HCYLSLD

was brought inside the subroutine. Tables 3 and 4

show the final results after these modifications. The

timings obtained on the CRAY-2 for 100 iterations
are shown in table 3.
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Table3.CRAY-2FinalDedicatedResultsfor
100IterationsWith4CPU's

Elapsedseconds 130.8
CPUseconds 512,3
MFLOPS 1011.6

ResultsfromtheCRAYY-MP arcshownin table4.

Table4.CRAYY-MPFinalDedicatedResults
forI00Iterations

Elapsedseconds-
4 CPU's 8 CPU's

156.9 83.3

CPU seconds 596.4 600.1
MFLOPS 84410 1586.4

6.2. Batch-Environment Observations

Because of system load, any quantitative study

of the effectiveness of multitasking must be done
in a dedicated environment. Cray Research warns

the user that macrotasking should not be used in
a batch environment, since elapsed time can vary

significantly from run to run depending on system

load. Theoretically, microtasking can improve sys-

tem throughput, because these jobs can efficiently
use CPU's that become idle for a short period of

time. However, this is true only on systems that are

not heavily loaded. The CItAY-2 at Langley is gen-

erally running at over 99 percent of CPU utilization.

In the UNICOS 4.0.9 environment, macrotasked

programs generally showed a marked decrease in
overall throughput and a marked increase in CPU

time. Microtasking jobs also showed a significant in-
crease in CPU time. Under UNICOS 5.1.6, micro-

tasked programs have CPU times that are slightly

greater than the CPU times for the equivalent single-

processor code.

Other factors may also affect the performance of

a microtasked code in a batch environment (personal

communication with S. K. Duggirala currently with

Thinking Machines Corporation). The operational

characteristics of tile multitasking libraries are sup-

posed to be transparent to tile user. There can be

significant idle (but connected) CPU time that is

charged to the user.

The time slice and swapping of executing pro-

cesses are also assumed to have an impact, though

undetermined, on multitasked code. Duggirala fur-

ther stated that if a user submits a microtasked job

to a batch-job mix that is dominated by sequential

code, substantial elapsed time speedup is observed.

On the other hand, submitting a mierotasked code

to a batch-job mix that is dominated by multitasked

codes yields little or no speedup. The environment

on the CRAY-2, though overwhelmingly sequential,

behaves more like a job mix that is dominated by

multitasked code. This behavior is caused by the

configuration of the batch queues and the large num-

ber of users at Langley Research Center. In general,

8 to 12 codes are candidates for execution at any

time, so there are few spare CPU cycles of which a

microtaskcd code can take advantage.

7. Concluding Remarks

When this project was started, it was believed

that to achieve a sustained computational rate of

over 1 gigaflop would require that the code run at not

less than 300 megaflops on a single central processing

unit (CPU) with about 95 percent parallelization.

When the single-processor execution rate reached

about 272 megaflops, it appeared that a peak rate of

just under 1 gigaflop would be the best that could be
accomplished on the CRAY-2. The final result of 1.01

gigaflops translates to a speedup of about 3.7, which

indicated from Amdahl's Law that at least 97 percent

of the code was being executed in parallel.

Some of the simple optimizations to the single-

processor version had the greatest impact, which
showed that user intervention in the multitasking

process is important. Computer codes that have been

converted from different architectures may have in-

herent inefficient constructs arising from the straight

translation, where little consideration is given to thc

new architecture. For example, the calls to TRANS

from within RMULT, prior to calling MXMA, arise

from the CYBER 205 genesis of the code.

Although this project was time-consuming be-

cause of a basic unfamiliarity with microtasking, it :

demonstrated that once programmers are familiar

with parallelization on CRAY computers, significant

improvement in performance should be possible with

minimal to moderate effort, depending on the struc-

ture of the code. Though final analysis of the el- -

fectiveness of any multitasking effort must still be

done on a dedicated machine, preliminary microtask-

ing versions can now be run in a nondedicated en-

vironment without incurring substantial execution- -

time penalty.

NASA Langley Research Center
Hampton, VA 23665-5225
September 5, 1991
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Appendix A The modified code is

Microtasking MXMA

A large percentage of the execution time is in
the library subroutine MXMA, which is called from
a number of locations in the code. In most cases,
MXMA is called from within a single or nested DO
loop, where the loop index variable appears as a
subscript in the argument list of MXMA. In both
cases, the iterations of the DO loops are independent
of one another, so that calls to MXMA can be made
simultaneously by multiple CPU's. In several other
places in the code, a call to MXMA does not appear
in the loop. In this situation, the work to be done
by MXMA can be divided into NCPU parts. An
example of a call to MXMA is as follows:

CALL MXMA (A, NA, IAD, B, NB, IBD, C,

$ NC, ICD, NAR, NAC, NBC)

where the arguments have the following meanings:

A first matrix of the product

NA spacing between column elements of A

IAD spacing between row elements of A

B second matrix of the product

NB spacing between column elements of B

IBD spacing between row elements of B

C output matrix

NC spacing between column elements of C

ICD spacing between row elements of C.

NAR number of rows in the first operand and
result

NAC number of columns in the first operand
and number of rows in the second

NBC number of columns in the second

operand and result

There were two situations in which the work

in MXMA was divided. In the first example, the
original code was

NW = NDR * NDZ

CALL MXMA (ZOP1V, 1, NZ, W, 1, NZ, RH2,

1, NZ, NZ, NZ, NW)

CMIC$ DO GLOBAL

DO 10 K = 1, NCPU

IP = ISTNW(K)

CALL MXMA(ZOP1V, 1, NZ, W(1, IP),

$ 1, NZ, RH2(1, IP), 1, NZ, NZ, NZ,

$ NWPTS(K))

10 CONTINUE

In the example above, RH2 is the resultant matrix.
Each processor multiplies matrix ZOPIV by one
fourth of the matrix W to result in one fourth of the

matrix RH2. The partitioned matrices are divided
by columns, so that the elements in each processor's
submatrix are stored contiguously.

The arrays NWPTS and ISTNW determine the
amount and starting location of the work to be done
in MXMA by each processor. The variables are
calculated in the main program with the following
code:

NRNP = NR/NCPU

NW = NDR * NDY

NWNP = NW/NCPU

DO 1 I = 1,NCPU

NRPTS(I) = NRNP

NWPTS(I) = NWNP

1 CONTINUE

IREM = NR (NRNP * NCPU)

IF (IREM.GT.0) THEN

DO 2 I = 1,IREM

NRPTS(I) = NRPTS(I) + 1

2 CONTINUE

ENDIF

IREM = NW- (NWNP * NCPU)

IF (IREM.GT.0) THEN

DO 3 I = 1,IREM

NWPTS(I) = NWPTS(I) + 1

3 CONTINUE

ENDIF

ISTNR(1) = 1

ISTNW(1) = 1

DO 4 I = 2, NCPU

ISTNR(I) = ISTNR(I 1) + NRPTS(I 1)

ISTNW(I) = ISTNW(I 1) + NWPTS(I 1)

4 CONTINUE

11



The arrays NRPTS and ISTNR were used with
other MXMA calls.

In the second example, the original code was

CALL MXMA(W2, 1, NZ, REVIV(1, 1, KT),

$ NR, 1, W1, 1, NZ, NZ, NZ, NR)

The microtaskcd code is

CMIC$ DO GLOBAL

DO 10 K = 1, NCPU

IP = ISTNR(K)

CALL MXMA(W2, 1, NZ,

$ REVIV(IP, 1, KT), NR,

$ 1, WI(1, IP), 1, NZ, NZ, NZ,

$ NRPTS(K))

10 CONTINUE

In this example, matrix W2 is multiplied by the

transpose of matrix REVIV, which yields matrix W1.
Matrix REVIV is divided into four parts along the

rows. The resultant submatrix W1 is divided along

the columns, so that the elements in each processor's

Wl arc contiguously stored.
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Appendix B
Microtasking the FFT's

As mentionedpreviously,the originalprogram
did notusethe scientificlibrary subroutinesfor cal-
culating the fast Fouriertransforms. The FOR-
TRAN subroutinesinvolvedin the FFT's consisted
of FFT991,FFT99A,FFT99B,VPASSM,FFTFAX,
FAX,andFFTRIG.Thefirst foursubroutinescalcu-
late thetransforms,whilethe otherthreecalculate
thesines,cosines,andfactorsneededfor computing
theFFT's. In theoriginalprogram,acall similarto
thefollowingismade:

CALLFFT991(WC1,WC2,TRIGS,IFAX,
$ INC, JUMP,N, LOT, ISIGN)

In turn, FFT991callstheotherlower-levelroutines.
ThearrayWC1holdsthedatavectorsthat contain
stridesof INC andlengthN, whileWC2is usedas
workspace.ThearraysTRIGS and IFAX have been

initialized previously. The number of data vectors

to be transformed is LOT, and the distance between

the starting elements of each vector is JUMP.

The microtasking approach taken was to divide

the loops that ranged from 1 to LOT into four pieces,
one for each processor. For the majority of the

execution time, LOT is equal to 2145; at other times,
LOT is equal to 196. Each loop was preceded by the
directive

CMIC$ DO GLOBAL FOR NCPU

In several cases, these loops were the outermost loops

of a nested DO loop, but in most cases, they were

the innermost loops, where the outer loops ranged
from 1 to LA and where LA was equal to 1, 2,

or 8. Clearly, microtasking over this outer loop

would have resulted in poor load balancing. When

necessary, the assignment statements of additional

variables involved with indexing in these loops were

rewritten so that they were independently calculated
across iterations.

In later versions of the code, calls to FFT991 were

replaced with calls to the scientific library subroutine

RFFTMLT, which required tile same argument list.

Subroutine RFFTMLT is also microtasked by divid-
ing the set of vectors to bc transformed across tile

four CPU's. For example,

CMIC$

10

DO GLOBAL

DO 10 J = 1, NCPU

CALL RFFTMLT(WCI(IFWA(J), 1),

WC2(1, J), TRIGS, IFAX, INC, JUMP,

N, LOTR(J), ISIGN)

CONTINUE

The array element LOTR(J) designates the number

of vectors to bc transformed, and IFWA(J) indicates

the starting point for the Jth processor. Array

WC2 is rcdimensioned so that each processor gets

one fourth of the work space. The following code

calculates these two arrays in the main program:

IREGPTS = LOT/NCPU

IREM = LOT (IREGPTS • NCPU)

DO 1 J = 1, NCPU

1 LOTR(J) = IREGPTS

IF (IREM.GT.0) THEN

OO2J= 1, IREM

2 LOTR(J) -- LOTR(J) + 1

ENDIF

IFWA(1) = 1

IF (NCPU.GT.1) THEN

DO 3 J = 2, NCPU

3 IFWA(J) = IFWA(J 1) + LOTR(J 1)

ENDIF
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