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Embraer, São José dos Campos, 12227-901, Brazil

Experimental measurements were carried out to assess the aeroacoustic characteristics of 30P30N
airfoil fitted with two different types of slat cove fillers at the aeroacoustic facility at the University
of Bristol. The results are presented for the angle of attack α = 18◦ at a free-stream velocity of
U∞ = 30 m/s which corresponds to a chord-based Reynolds number of Rec = 7 × 10◦. Simultaneous
measurements of the unsteady surface pressure were made at several locations in the vicinity of slat
cove and at the far-field location to gain a deeper understanding of the slat noise generation mecha-
nism. The results are analyzed using a higher-order statistical approach to determine the nature of
the broadband hump seen at low-frequency for the 30P30N high-lift airfoil observed in recent stud-
ies and also to further understand the tone generation mechanism within the slat cavity. A series of
cross-correlation and coherence of the unsteady pressure measurements are carried out to identify
and isolate the low-frequency hump. Wavelet analysis is performed to investigate the nature of the
slat-wing resonant intermittent events in both time and frequency domains. The far-field noise mea-
surement results showed that significant noise reduction can be achieved by the use of slat cove fillers.
A series of far-field and near-field correlation are also presented to show the propagated noise from
the slat.

Nomenclature
c = stowed chord length, m
cs = slat chord length, m
f = frequency, Hz
l = span length, m
p′ = fluctuation surface pressure, Pa
Pre f = reference pressure (= 2 × 10−5), Pa
Prms = pressure root mean squared
Rec = chord-based Reynolds number
S ts = slat chord-based Strouhal number, (S ts = f · cs/U∞)
U,U∞ = mean velocity, free-stream velocity, m/s
α = angle of attack, ◦

τ = time delay, s
Φpp = wall-pressure power spectral density, Pa2/Hz
γ2

pi p j
= wall pressure coherence between transducers pi and p j
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I. Introduction

THE extensive growth of the aircraft industry constantly demands much more efficient and quieter aircraft than the
ones currently in service. The impact noise generated by aircraft during take-off and landing has come under a lot

of scrutinies over the past decade especially with the increasing popularity in air travel and expanding airports. Even
though the aircraft engine noise has been brought down substantially by the use of high bypass engines the airframe
noise remains a major contributor to aircraft noise. In order to reduce these prominent noise sources several passive
and active flow control methods have been investigated in the past it includes morphing structures [1–10], porous
materials [11–13], surface treatments [14], serrations [15–17] and transverse jets [18]. The high-lift devices namely
the slats and flaps are one of the major contributors to airframe noise. Their noise generation mechanism is of both
broadband and narrowband in nature. Studies on conventional slat and wing configurations have shown that it mainly
comprises of broadband and tonal noise components. Several studies on slat noise have shown several discrete tones
at mid-frequency range [19–34]. However, their aeroacoustic mechanism is yet to be fully understood. These tonal
peaks decrease with the angle of attack but their amplitude decreases with increasing slat gap and overlap [28].

Several successful studies [35–45] were carried out over the two decades to reduce the characteristic noise arising
from the slat. They achieved this by enclosing the recirculation within the slat cavity. The characteristic tones from the
slat are due to the feedback loop between the vortex shedding emanating from the slat cusp and its impingement on
the slat lower surface. In order to eliminate this tonal noise and the broadband noise from the shear layer impingement
the approach of filling the slat cavity is used. Horne et al. from NASA in order to eliminate the unsteady recirculation
region within the slat cove tested a solid slat cove filler (SCF) and showed that it was effective in reducing broadband
slat noise up to 4-5 dB [35]. Streett et al. further investigated and showed noise reduction to be sensitive to the
angle of attack and SCF modification. The SCF modification showed a reduction of 3-5 dB over a wide spectrum [36].
Imamura et al. and Ura et al. from JAXA showed experimentally and computationally [39,40] and showed a reduction
of 5 dB.

Previous studies [19–34] have showed that the strong tonal peak in the mid-frequency range (S ts = 1 − 5) is gen-
erated due to the flow acoustic cavity feedback mechanism of slat cove shear layer instabilities. A possible quadratic
interaction between the tonal peaks has also been observed [26–30]. A spectral hump at low-frequency range (S ts < 1)
could be observed in these studies but it is always thought to be part of the cavity feedback mechanism.

In a recent study [2], the authors showed that the first Rossiter mode is concealed within the spectral hump 0.5 <
S ts < 1 and that the source of the spectral hump is not solely due to the Rossiter modes. The Rossiter modes are
due to the flow-induced oscillations from the vortex shedding and the acoustic feedback mechanism has a distinct
narrowband peak. Further higher-order spectral analysis of the near field pressure fluctuations also confirmed this with
strong self-interaction of the spectral hump (0.5 < S ts < 1) with no cross interaction, while the other narrowband
peaks showed a high level of quadratic coupling and cross interaction. The results from the persistence spectrum also
showed that the spectral hump (0.5 < S ts < 1) is not dominated over time like the other narrowband peaks, rather the
energy of the broadband spectra is evenly distributed in time over the entire frequency range.

Even though several studies [35–44] have been performed to report the aerodynamic and aeroacoustic behaviour
of slat cove fillers. Further fundamental understanding of the noise generation mechanism of the slat and the noise
suppression mechanism of the slat cove fillers are yet to be analyzed in detail. It is well known that the source of
the tonal peak is due to the Rossiter modes that arise from the interaction between the slat cusp and its trailing edge,
however the source of the broadband hump at low-frequency is yet to be identified. This paper uses higher-order
spectral and statistical analysis to improve the understanding of this low-frequency spectral hump and the slat noise
generation mechanism. Data were analyzed providing an exhaustive intermittency characterization including spectral
quantities, high order statistical moments, cross-correlations, and wavelet transform.

The paper is divided as follows: the experimental setup is reported in section II, results in terms of single and
two-point statistics are reported in section III. The final remarks are in section IV.
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II. Experimental Setup
A. Airfoil Setup

An aluminum 30P30N three-element high-lift airfoil with a retracted chord of c = 0.35 m and a span of l = 0.53 m
was manufactured using a computer-aided numerically controlled machine. The geometrical parameters of the high-
lift airfoil are shown in Fig. 1 and Table. 1. In order to maintain two-dimensionality within the slat cove and flap cove
regions, no brackets were used in the spanwise direction. All the three-elements were held together by steel clamps
on the sides of the airfoil. A zig-zag turbulator tape with a thickness of ht = 0.5 mm and a width of wt = 6 mm with
a turbulator angle of 70◦ was used at location x/c = −0.055 on the pressure side of the slat surface just upstream of
the slat cusp to trip the flow and induce turbulent shear layer [22]. Thorough studies on the manufactured 30P30N
high-lift airfoil model were carried out at different test conditions and the results validated with existing benchmark
studies [1, 2].

Fig. 1. Geometric parameters of the 30P30N three-element high-lift airfoil.

Table 1. Geometrical parameters in percentage of stowed airfoil chord, c = 0.35 m.

Slat chord cs 0.15c
Main-element chord cme 0.83c
Flap chord c f 0.3c
Slat deflection angle δs 30◦

Flap deflection angle δ f 30◦

Slat gap gs 2.95%
Flap gap g f 1.27%
Slat overhang os −2.5%
Flap overhang o f 0.25%

1. Slat cove-filler Design

As part of the noise reduction study of the 30P30N airfoil, a slat cove-filler (SCF) was designed using a similar
strategy introduced by Imamura et al. [39, 40] for experimentation purposes. Initially, preliminary RANS steady-state
simulation for the Baseline case was performed at the angle of attack α = 8◦ and the slat shear layer trajectory with
high TKE was used to define the shape of the SCF profile. Another configuration with a Half slat cove filler (H-SCF)
was also considered, which exhibits good aerodynamic and noise reduction properties as shown computationally by
Tao [44]. Both the slat cove-fillers were manufactured using 3D printing technology and was manufactured in four
different sections that could be slid along the span of the slat cove.

B. Wind-Tunnel Setup

The aeroacoustic measurements were carried out at the University of Bristol Aeroacoustic Facility. It is a closed-circuit
open-jet anechoic wind tunnel with a nozzle exit of 0.5 m × 0.775 m and a contraction ratio of 8.4:1. The wind tunnel
is capable of velocities up to 40 m/s with turbulence levels as low as 0.25% [46]. The tests were carried out at angle
of attack α = 18◦ for a free-stream velocity of U∞ = 30 m/s, which corresponds to a chord-based Reynolds number of
Rec = 7.0 × 105.
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1. Acoustic measurements and instrumentation

FG-3329-P07 transducers from Knowles Electronics were installed on the main-element of the wing to measure the
unsteady surface pressure on the 30P30N airfoil (FG1-FG5, see Table. 2). This transducer was selected for measure-
ment as it was proven successful in previous experiments carried out by Garcia [47] on NACA 0012 airfoil. The
transducer has a diameter of 2.5 mm and a height of 2.5 mm with a sensing area of 0.8 mm. The unsteady surface
pressure measurements were also performed using remote sensing microphone probes made from Panasonic WM-61A
microphones and 1.6 mm diameter brass tube with 0.4 mm pinholes at different streamwise locations (see Fig. 2 and
Table. 2) and are connected to the pressure tap brass tube using a plastic tubing with an inner and outer diameter of
0.8 mm and 4 mm [48]. The far-field measurements were carried out using Panasonic WM-61A microphones placed
at an angle of 90◦ at a distance of 1 m below the the slat trailing edge. The calibration of the near and far-field mi-
crophones was carried out using a pistophone calibrated G.R.A.S. 40PL microphone. The data was acquired using a
National Instruments PXIe-4499 modules mounted in a National Instruments PXIe-1062Q chassis. The data for all the
microphones were simultaneously collected for 120 seconds at a sampling frequency of fs = 215 Hz. The power spec-
trum results were obtained using the power spectral density (PSD) of the pressure signals with the Hanning window
and the acquired data were averaged for 220 times to yield a frequency resolution of ∆ f = 2 Hz. The statistics of the
pressure fluctuation were investigated using the Sound Pressure Level (SPL) evaluated using the following equation:

S PL = 20 log10

( prms

pre f

)
, (1)

where prms is the root-mean-square of the acoustic pressure and pre f is the reference pressure that measures pre f =

20µPa. The SPL was plotted versus the Strouhal number computed as follows:

S ts =
f cs

U∞
, (2)

where cs is the slat chord and U∞ is the free-stream velocity. The results of the unsteady surface pressure auto-spectra
are presented in Fig. 6 for all the remote sensors (see Table 2) and the tested slat configurations.

Fig. 2. Location of the unsteady pressure measurement probes a) Baseline, b) H-SCF and c) SCF.

Table 2. Streamwise and spanwise unsteady pressure measurement location on the 30P-30N airfoil.

No. x (mm) y (mm) z (mm)

S1 -6.918 -11.622 265
M1 17.347 -10.019 265
M2 15.126 -5.839 265
M3 17.622 0 265
M4 23.520 5.485 265
FG1 22.414 -11.356 277
FG2 22.414 -11.356 280.6
FG3 22.414 -11.356 288.4
FG4 22.414 -11.356 301.4
FG5 22.414 -11.356 319.6
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III. Results and Discussion
A. Far-field noise

The far-field noise levels for the 30P30N airfoil with various slat cove filer configurations were measured using a
single Panasonic WM-61A microphone below the slat trailing edge at an angle of 90◦ at a distance of 1 m. The
far-field pressure fluctuations were analyzed in the frequency domain using the SPL through the Eq. 1. The spectra
for all the different configurations were reported in Fig. 3. Persistence of the peak close to S ts = 1.6 and S ts = 3.2
are detected for both near field and far-field. The results from the near-field region at location FG1 is presented in
Fig. 3(b). The results show a characteristic tonal peak for the Baseline configuration.
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Fig. 3. Sound pressure level for all the tested configuration a) far-field measurements FF1 at 1 m below the slat trailing edge b) Near-field
measurement FG1 on the main-element.

The tonal characteristics of the wall pressure spectra with multiple distinct narrowband peaks indicate the presence
of cavity oscillations for the Baseline in Fig. 3. These tonal peaks were also seen in the far-field noise measurements.
The tonal peaks observed are due to the flow-acoustic coupling which leads to resonance as all of them could be
accurately predicted by the simplified Rossiter mode equation [21, 25, 49]. The discrete tonal frequencies due to the
flow interaction with the slat, based on Terracol’s study [25], can be predicted from

fn = n
U∞
La

(
1

M + ηl/κv

)
. (3)

A simplified schematic of the parameters used in Eq. 3 by Terracol et al. [25] are shown in Fig. 4 and the parameters
used in the current study are listed in Table 3. The flow field, i.e. local flow velocity, data required for this prediction
model were acquired from the PIV measurements by the authors in previous studies [1, 3, 6].

Fig. 4. Simplified schematic of the tonal frequency prediction model by Terracol et al. [25].

The results from the Terracol et al. [25] Eq. 3 are presented in Table 4. The modes are accurately predicted by Eq. 3
which confirms that the modes are generated from an acoustic feedback mechanism. The near-field results presented
in Fig. 3 clearly show that the narrowband peaks from S t2 to S t6 distinct and are of high energy. Whereas, the S t1 is
more of a spectral hump distributed between S ts = 0.5 − 1. The source of this spectral hump will be further analyzed
in the following section.

5 of 17

American Institute of Aeronautics and Astronautics



Table 3. Parameters used for tonal peak frequency prediction in the present study.

α Angle of attack 18◦ units

Lv Shear layer path length 0.037 m
La Acoustic path length 0.035 m
Uv Shear layer convection velocity 18 m/s
U∞ free-stream velocity 30 m/s
M free-stream Mach number 0.09 -
κv = Uv/U∞ 0.60 -
ηl = Lv/La 1.06 -

Table 4. The narrow-band frequencies observed for the Baseline case in the near-field and far-field measurements at angles of attack 18◦.

No.1 S tn S ts Description Experiment f (Hz) Analytical f (Hz)

1 S t1 0.85 mode 1 485.7 461.7
2 S t2 1.611 mode 2 920.6 923.3
3 S t3 2.304 mode 3 1316.6 1385
4 S t4 3.217 = 2S t2 1838.3 1846.6
5 S t5 3.932 = S t3 + S t2 2246.9 2308.3
6 S t6 4.833 = 3S t2 2761.7 2769.9

Wavelet decomposition for the far-field noise measurement is carried out to identify a possible influence of the
hydrodynamic component propagating into the far-field region. The wavelet decomposition method employed is the
WT3 [54], which is based on an iterative procedure capable of extracting the coherent structures from the pressure
field. Thus the hydrodynamic component is related to the wavelet coefficients larger than the threshold level and the
acoustic component to the wavelet coefficients lower than the threshold level as defined in Mancinelli et al. [54].

The results for the far-field spectra for all the tested 30P30N configuration after the decomposition procedure are
presented in Fig. 5 for the FF1 microphone. The results for each configuration are presented for three-component
of the signal, namely, original, acoustic, and the hydrodynamic component. For the Baseline and H-SCF configura-
tion, the results clearly show for frequency between S ts = 0.5 − 5 the noise is dominated by both the acoustic and
hydrodynamic components. The results for the Baseline and H-SCF show that for frequencies S ts < 0.5 and S ts > 5
the noise is predominantly the acoustic component. For the SCF configuration, only S ts = 1 − 2 is dominated by
both the acoustic and hydrodynamic components, while the rest of the noise spectrum 1 > S ts > 2 is predominantly
dominated by the acoustic component. The results show that the cove filler configurations have a significant effect
on the hydrodynamic component of the spectra which is reduced compared to the Baseline configuration (see Fig. 5).
The wavelet decomposition method (WT3) has not proved to be efficient with tonal peaks, however, the comparative
results presented here are in good agreement with the previous analysis [1, 2], which has shown that the tonal peak is
related to the coherent structures, thus hydrodynamic component. Further analysis will be carried out to improve the
wavelet decomposition methods to be robust and to analyze the presented near-field pressure fluctuations dominated
by large peaks intermittent events.
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Fig. 5. Wavelet decomposition of the far-field microphone FF1 located at 1 m below the slat trailing edge.

B. Wall pressure single-point statistics

1. Power spectral density

As part of this experimental campaign in order to isolate the spectral hump at S t1, several remote sensors (M1-M4 and
S1) were connected to the brass pressure ports in the vicinity of the slat cove region were used. The location of these
remote sensors are detailed in Fig. 2 and Table 2. The sound pressure level for the remote sensors on the main-element
M1-M4 and on the slat S1 for all the tested configurations are presented in Fig. 6. At first glance, the results for the
Baseline configuration clear show several tonal peaks related to the Rossiter modes arsing from the feedback between
the slat cusp and slat trailing edge. The energy of the spectra increases as the flow moves from remote sensor location
M1 to M3 and decrease at M4 once the flow has passed through the slat gap. The energy of the spectra appears to
be highest at M3. At location S1 on the pressure side of the slat, lower energy content is observed for the remote
sensors. When considering the spectral hump S t1, it is of the same magnitude at both the locations M2 and M3, and
the energy is lowest at the location M3 and slightly higher slat sensor location S1. At the slat vicinity the broadband
region (S ts < 0.5) of the spectra is lowest at the location S1.

The use of slat cove fillers clearly eliminates the tonal peaks observed in the Baseline. The results show that the
remote sensors M1 and M4 have similar spectral levels with M4 having a slightly higher spectral level at S t > 1 for
both the slat cove filler configurations. The remote sensors M2 and M3 show similar levels at S t < 1 but at S t > 1,
M3 shows higher spectral levels both the cove filler configurations.
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Fig. 6. Near field noise spectra for the surface pressure transducers shown in Fig. 8.

2. Probability density function

The wall-pressure statistics are also studied in terms of probability density function (PDF) distributions. The pressure
variable is expressed in reduced form, i.e., normalized to have zero mean value and unitary standard deviation. The
PDFs achieved from the experiments are compared with the standard Gaussian distribution as reported in [50]. The
results for the PDF at different transducer locations are presented in Fig. 7.

The results of the PDF for the surface pressure fluctuations within the slat cove region are presented in Fig. 7.
It is evident that the PDF shape for the Baseline configuration is highly dependant on the remote sensor location.
At the remote sensor location M1, a quasi-Gaussian behavior is observed probably related to the slight presence of
persistent events. Whereas, at location M2 and M3 the pressure events are distributed very close to the mean value. At
location M4 close to the slat gap, the PDF is more inclined towards the negative pressure events. The use of slat cove
fillers results in a quasi-Gaussian distribution of the pressure events, except for the location M4 where a positive tail
is detected.

3. Skewness and Kurtosis analysis

To have a global statistical view of the fluctuating pressure field authors have reported an investigation in terms of
higher-order statistical moments, like skewness (s) and kurtosis (k), computed as follows:

s =
E[p − µ]3

σ3
p

, (4)

k =
E[p − µ]4

σ4
p

, (5)

where µ is the mean of the signal p, σp is the standard deviation of the signal and E[·] is the expected value.
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Fig. 7. PDF for the various remote sensor on the slat and on the main-element show in Fig. 8.

The results of the skewness and kurtosis are presented in Fig. 8. If the data are fairly close to Gaussian distribution
the skewness is said to be between -0.5 and 0.5 and the kurtosis to be 3. The results clearly show that for both the slat
cove filler configurations the skewness and the kurtosis are within or close to the limits of a Gaussian distribution as
seen in the PDFs of the pressure events. However, for the Baseline, the skewness of the pressure events at M4 is lower
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Fig. 8. Skewness and Kurtosis at various remote sensor on the main-element show in Fig. 8.

than -0.5 which suggests a negative skewness indicating that the size of the left-handed tail is larger than the right-
handed tail of the distribution. For the kurtosis results the remote sensor locations M2 and M3 show values lower than
three which suggests a platykurtic distribution with fewer values in the tails and fewer values close to the mean. This
could be related to the presence of the persistence turbulence associated with the peak on the PSDs. Even though the
skewness and kurtosis results clearly show that the flow characteristics are noticeably different at the various remote
sensor locations for the Baseline, further analysis of the frequencies of interest would be required before arriving at
conclusions.

C. Wall pressure two-point statistics

1. Cross-correlation analysis

The two-point statistics of the pressure signals were computed using the cross-correlation between two pressure trans-
ducers. In the first analysis, M1 is fixed and correlated with all the others.

The cross-correlations were computed as follows:

Rpi p j (τ) =
pi(t + τ)p j(t)

pirms p jrms

, for pi = M1 and p j = S1, M1, M2, M3, M4, (6)

where pi and pirms are the surface pressure and surface pressure root mean squared of the reference transducer signals
(M1), p j and p jrms are the surface pressure and surface pressure root mean squared of the upstream/downstream trans-
ducer signals at various location along the chord, τ is the time delay and the time average is represented by the overbar.
The results of the cross-correlation of the surface pressure with reference microphone M1 at the angle of attack 18◦

are presented in Fig. 9.
The streamwise cross-correlation results for the remote sensors on the main-element (M1-M4) show that difference

in the time lag between the various remote sensors for the Baseline configuration increases with the distance between
the remote sensors. For the H-SCF configuration, the time lag between the main-element remote sensors has increased
more than that of the Baseline. In the case of the SCF configuration, the time lag is further increased compared to
both the Baseline and the H-SCF. The cross-correlation magnitude between the M1 and M4 has reduced substantially
for the cove filler configuration. This is probably due to interference of the cove fillers on the coherent structures
passing between M1 and M4. The use of cove filler appears to interfere with the turbulent structures making the
cross-correlation shape larger probably due to the breaking of coherent structures.

2. Coherence analysis

The coherence function calculates the phase correlation between two different pressure transducers averaged over
time. The coherence between the surface pressure transducers can be obtained using the following equation,

γ2
pi p j

( f ) =
| Φpi p j ( f ) |2

Φpi pi ( f )Φp j p j ( f )
for pi = M1 and p j = S1, M1, M2, M3, M4, (7)
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Fig. 9. The streamwise cross-correlation of the surface pressure fluctuations between the remote sensor M1 and the following remote
sensors on the main-element

where the symbol |�| denotes the absolute value, pi is the reference transducer signal (M1), p j is the pressure trans-
ducer signal at various location within the slat cove region and Φpi p j is the cross-spectral density between the two
pressure signals pi and p j. The results for the near-field coherence of signals within the slat cavity region with M1 as
reference transducers are presented in Fig. 10.

The results of the streamwise coherence of the remote sensors show a high level of coherence for the even narrow-
band peaks (S t2,4,6) and low coherence for the odd narrowband peaks (S t3,5) between the main-element remote sensors
(M1-M4). As discussed in previous sections the spectral hump is clearly of different nature at remote sensor location
M1-M2 has a high coherence level between S ts = 0.6 − 1, and M1-M3 between S ts = 0.6 − 1, whereas at location
M1-M4 the high level of coherence is only between S ts = 0.8 − 1. This shows that even though the peak S t1 might be
related to Rossiter mode but the hump itself is not caused by it. For the H-SCF and SCF configuration high coherence
for S ts < 1 at location M1-M2 and M1-M3. Interestingly at location M1-M2 for S ts > 2 the SCF configuration shows
higher coherence compared to the H-SCF at M1-M2, the cause of which is yet to be investigated. The coherence level
at M1-M4 for the SCF configuration is lower compared to the H-SCF, however, for both the H-SCF and SCF a peak
in the coherence level can be found at S ts = 1.6.

In order to understand the propagation effects of the wall pressure identified signatures the magnitude square
coherence between wall pressure and far-field signals are presented in Fig. 11.

The results of the near to far-field coherence presented in Fig. 11 show a very high level of coherence for a series
of narrowband peaks for the Baseline configuration. The coherence results are high for the even narrowband peaks
(S t2,4,6) relative to the odd narrowband peaks (S t1,3,5) for all the remote sensors. A coherence level of close to 0
is detected for a wide range of frequency for both the slat cove filler configurations. For the H-SCF configuration
marginally increased coherence levels can be found for two spectral humps at about S ts = 0.5 − 1 and at S ts = 1.6.
The SCF configuration has the lowest coherence levels with the far-field compared to all the configurations except for
a small spectral hump at about S t = 1.6. It is noteworthy that for the SCF configuration the S t1 spectral hump has no
coherence with the far-field.
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Fig. 10. The streamwise coherence of the surface pressure fluctuations between the remote sensor M1 and the following remote sensors on
the main-element.
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Fig. 11. Coherence of the surface pressure fluctuations between the far-field microphone FF1 located at 1 m below the slat trailing edge
and the various remote sensors on the high-lift airfoil.
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Fig. 12. Wavelet coefficient magnitude contours for the near-field remote sensors (M1-M4 and S1).
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D. Wavelet analysis

The continuous wavelet transform (CWT ) is used. The CWT consists of a signal projection over a basis of support
functions provided by the translation and dilatation of a mother wavelet function. The definition, according to [51], is
reported as follows:

w(s, t) = C
−1
2
ψ

∫ ∞

−∞

p(τ)ψ∗
( t − τ

s
)
, (8)

where s is the scale dilatation parameter corresponding to the width of the wavelet, τ is the translation parameter

corresponding to the position of the wavelet, C
−1
2
ψ is a constant that takes into account the mean value of ψ(t) and

ψ∗
( t−τ

s
)

is the complex conjugate of the dilated and translated mother wavelet ψ(t). The Morlet kernel is chosen as the
mother wavelet, as reported analytically in [52, 53].

The contours of the wavelet coefficient magnitude for the near-field remote sensors on the main-element M1-M4
and the slat S1 are presented in Fig. 12. The results for the Baseline configuration show a high wavelet coefficient
at the vortex shedding frequency of S ts = 1.61 for all the remote sensor locations. For the frequency of interest, S t1
and S t2 highest wavelet coefficient can be found at location M3 amongst the various remote sensors. For the H-SCF
and SCF configuration, the peak at S t2 is absent. The results show a high wavelet coefficient at M3 and a low wavelet
coefficient at M4 compared to all the other remote sensor locations for all the tested configurations.

The wavelet coefficient of the frequencies of interest S t1 to S t6 (see Table 4) is extracted from the wavelet scalo-
gram for further statistical analysis. The standard deviation of the extracted frequencies are presented in Fig. 13. The
standard deviation results for the Baseline configuration at the primary frequency of interest at the spectral hump S t1
is highest for the remote sensor location M3. For the H-SCF and SCF configuration high values of the spectral hump
S t1 can be observed at M3 compared to the other remote sensor locations. Since the main-element coherence results
(M1-M4) also showed traces of the spectral hump for the H-SCF and SCF configuration, with high standard deviation
at M3 for all the three configurations at S t1 it can be concluded that spectral hump arises from the slat gap.

St
1

St
2

St
3

St
4

St
5

St
6

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

S1

M1

M2

M3

M4

a) Baseline

St
1

St
2

St
3

St
4

St
5

St
6

0

0.01

0.02

0.03

0.04

0.05

0.06

S1

M1

M2

M3

M4

b) H-SCF

St
1

St
2

St
3

St
4

St
5

St
6

0

0.005

0.01

0.015

0.02

0.025

0.03

M1

M2

M3

M4

c) SCF

Fig. 13. Standard deviation of the extracted frequencies of interest (S t1−6) from the wavelet scalogram

IV. Conclusion
An experimental study with a 30P30N high airfoil fitted with two different types of slat cove fillers was carried out
in the aeroacoustic facility at the University of Bristol. Unsteady surface pressure measurements within the slat cove
were carried out using was 5 remote sensing transducers and 5 flush-mounted transducers. The results are presented
for all the tested configurations at the angle of attack α = 18◦ for a free-stream velocity of U∞ = 30 m/s, which
corresponds to a chord-based Reynolds number of Rec = 7 × 105. As expected the slat cove filler configuration shows
reduced noise levels at low frequency and the characteristic tonal noise generated by the slat is eliminated by the use of
the slat cove fillers. Intermittent events induced by the resonant mechanism between the slat and its trailing edge were
investigated for all the tested configurations. The streamwise correlation results between the remote sensors showed
possible interference of the slat cove fillers with the turbulent structures making the cross-correlation shape larger
probably due to the breaking of coherent structures. The streamwise coherence results showed that the spectral hump
is different than that of the Rossiter modes. The coherence results for the SCF configuration also showed an increase at
high frequency S ts > 2 between M1-M2, which requires further investigation. The near to far-field coherence results
showed high coherence for the narrowband peaks for the Baseline configuration, whereas, the results for the slat cove
filler configurations showed an overall low coherence. To identify the source of the spectral hump wavelet analysis
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was carried out. The results from the wavelet analysis showed that high levels of wavelet coefficient for the frequency
of interest was at the remote sensor location M3, which is located at the slat gap. Further analysis using standard
deviation was carried out for the frequencies of interest extracted from the wavelet analysis. The results yet again
confined that the source of the spectral hump was close to the slat gap region.
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